亚马逊:基于LLM的RAG细粒度评估框架

在这里插入图片描述

📖标题:RAGCHECKER: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation
🌐来源:arXiv, 2408.08067

摘要

尽管检索增强生成(RAG)已经展现出了利用外部知识的良好能力,但由于RAG的模块化特性、长篇回复的评估和测量的可靠性等因素,对RAG系统进行全面评估仍然是具有挑战性的。在本文中,我们提出了一个细粒度的评估框架RAGChecker,它包含了对检索和生成模块的一套诊断指标。元评估验证了RAGChecker与人类判断的相关性显著优于其他评估指标。使用RAGChecker,我们评估了8个RAG系统,并对它们的性能进行了深入分析,揭示了RAG架构设计选择中的有见地的模式和权衡。RAGChecker的指标可以指导研究人员和实践者开发更有效的RAG系统。

🛎️文章简介

🔸研究问题:在检索增强生成(RAG)系统中,如何诊断和提高检索器和生成器的性能。
🔸主要贡献:论文提出了一种细粒度的框架RAGCHECKER,用于诊断RAG系统的检索器和生成器的性能,并提供了改进建议。

📝重点思路

🔺相关工作

🔸RAG:LLM展示了生成文本的强大能力,但也存在诸如过时信息和幻觉等障碍,通过检索外部知识能够提高准确性和真实性。
🔸RAG评估:现有的评估实践可分为仅评估生成器和端到端性能,指标包括质量分数(上下文相关性、接地性和答案相关性)以及人工反馈(流畅性、感知效用和可验证性等)。

🔺论文方案

🔸输入:以元组⟨q,D,gt⟩的格式准备基准数据集中的每个样本,表示查询、文档和真实答案。
🔸细粒度评估:RAG系统生成的响应可能混合了正确和错误,因此需要更细粒度评估答案质量,包括 ①文本到声明提取器 ②声明蕴涵检查器
🔸评估指标:①总体指标为F1 ②检索器指标,召回率为包含真实声明的比例,精确度为包含真是声明的比例 ③生成器指标为忠实度,生成的声明在检索中的覆盖率
🔸实验:选择了8个RAG系统,由2个检索器和4个生成器组合而成。

🔎分析总结

🔸检索质量至关重要,增加块的数量和大小可以提高召回率和F1分数,这种改进对各种生成器都有效,但效果会饱和。
🔸生成器尺寸带来全面改进,如提高上下文利用率、降低噪声敏感性和更少的幻觉。
🔸稳定且高性能的上下文利用是关键,信息丰富的上下文可以提高忠诚度并减少幻觉。
🔸检索器召回率与生成器噪声敏感性之间需要权衡,前者不可避免的会同时提高覆盖度和噪声,后者需要有效过滤噪声并充分利用上下文。

💡个人观点

论文提出了细粒度的诊断框架,并深入分析和改进RAG系统中检索器和生成器的性能。

附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值