RAGChecker项目使用教程
1. 项目目录结构及介绍
RAGChecker项目的目录结构如下所示:
amazon-science/RAGChecker
├── .github/
│ └── workflows/
├── data/
├── examples/
├── imgs/
├── rag_baselines/
├── ragchecker/
│ ├── __init__.py
│ ├── checker.py
│ ├── metrics.py
│ ├── rag_results.py
│ └── utils.py
├── scripts/
├── tutorial/
├── .gitignore
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── NOTICE
├── README.md
├── pyproject.toml
.github/workflows/
:包含GitHub Actions的工作流文件,用于自动化项目的一些操作,如CI/CD等。data/
:存放项目使用的数据集。examples/
:包含了一些示例输入和输出文件,用于展示如何使用RAGChecker。imgs/
:可能包含项目的一些图像文件,如架构图等。rag_baselines/
:可能包含了一些基线模型的代码或数据。ragchecker/
:项目的核心代码库,包含了模型的检查器、评估指标、结果类和工具类。scripts/
:包含了一些脚本文件,可能用于数据处理或项目部署。tutorial/
:可能包含了一些教程文件,用于指导用户如何使用RAGChecker。- 其他文件如
CODE_OF_CONDUCT.md
、CONTRIBUTING.md
、LICENSE
、NOTICE
和README.md
等,分别是项目的行为准则、贡献指南、许可协议、通知文件和项目自述文件。
2. 项目的启动文件介绍
项目的启动通常涉及ragchecker/
目录下的Python文件,特别是__init__.py
,它初始化了项目的一些基本模块。具体到如何启动项目,可能需要查看scripts/
目录下的脚本或者README.md
中的说明。
例如,如果使用命令行工具来启动项目,可能会看到如下命令:
python -m ragchecker.checker --input_path=examples/checking_inputs.json --output_path=examples/checking_outputs.json
这个命令将会启动RAGChecker的检查器,读取examples/checking_inputs.json
文件作为输入,并将输出结果保存到examples/checking_outputs.json
文件。
3. 项目的配置文件介绍
项目的配置文件可能包含在ragchecker/
目录下的config.py
文件中,或者以toml
、yaml
等格式存在,如项目中的pyproject.toml
。配置文件通常用于定义一些项目全局参数,如数据路径、模型参数、评估指标等。
例如,一个可能的配置文件内容如下:
[tool.ragchecker]
input_path = "examples/checking_inputs.json"
output_path = "examples/checking_outputs.json"
extractor_name = "bedrock/meta.llama3-1-70b-instruct-v1:0"
checker_name = "bedrock/meta.llama3-1-70b-instruct-v1:0"
batch_size_extractor = 32
batch_size_checker = 32
metrics = ["precision", "recall", "f1"]
这个配置文件定义了RAGChecker的输入输出路径、使用的提取器和检查器模型名称、批处理大小以及需要计算的评估指标。在实际使用时,用户可以根据自己的需求调整这些参数。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考