AgentOps 开源项目教程
agentopsPython SDK for agent evals and observability项目地址:https://gitcode.com/gh_mirrors/ag/agentops
项目介绍
AgentOps 是一个用于监控、成本跟踪、基准测试和其他功能的 Python SDK。它与大多数 LLM(大型语言模型)和代理框架(如 CrewAI、Langchain 和 Autogen)集成。AgentOps 提供了全面的可观察性、实时监控、成本控制、故障检测和工具使用统计等功能,帮助用户将 AI 代理从原型快速带入生产环境。
项目快速启动
安装
首先,通过 pip 安装 AgentOps SDK:
pip install agentops
初始化
在项目代码中初始化 AgentOps 客户端,并插入你的 API 密钥:
import agentops
# 初始化 AgentOps 客户端
agentops.init('<INSERT YOUR API KEY HERE>')
# 可选:记录特定函数
@agentops.record_action('sample function being record')
def sample_function():
# 你的函数代码
pass
# 结束会话
agentops.end_session('Success')
应用案例和最佳实践
案例一:实时监控 AI 代理
通过 AgentOps,你可以实时监控 AI 代理的执行情况,包括会话回放、指标和实时监控工具。这有助于快速识别和响应代理故障和多代理交互问题。
案例二:成本管理
AgentOps 允许你跟踪和管理在 LLM 和 API 调用上的花费。通过详细的成本报告,你可以更好地控制预算并优化资源使用。
典型生态项目
CrewAI
CrewAI 是一个与 AgentOps 集成的代理框架,提供了自动监控功能。通过设置 AGENTOPS_API_KEY
环境变量,你的 Crew 代理将自动获得监控功能。
pip install git+https://github.com/AgentOps-AI/crewAI@git@main
AutoGen
AutoGen 是另一个与 AgentOps 集成的代理框架,通过简单的两行代码,你可以为 AutoGen 代理添加完整的可观察性和监控功能。
import agentops
agentops.init('<INSERT YOUR API KEY HERE>')
通过这些集成,你可以轻松地将 AgentOps 的功能扩展到多个代理框架中,提升你的 AI 代理项目的可观察性和稳定性。
agentopsPython SDK for agent evals and observability项目地址:https://gitcode.com/gh_mirrors/ag/agentops
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考