AgentOps 开源项目教程

AgentOps 开源项目教程

agentopsPython SDK for agent evals and observability项目地址:https://gitcode.com/gh_mirrors/ag/agentops

项目介绍

AgentOps 是一个用于监控、成本跟踪、基准测试和其他功能的 Python SDK。它与大多数 LLM(大型语言模型)和代理框架(如 CrewAI、Langchain 和 Autogen)集成。AgentOps 提供了全面的可观察性、实时监控、成本控制、故障检测和工具使用统计等功能,帮助用户将 AI 代理从原型快速带入生产环境。

项目快速启动

安装

首先,通过 pip 安装 AgentOps SDK:

pip install agentops

初始化

在项目代码中初始化 AgentOps 客户端,并插入你的 API 密钥:

import agentops

# 初始化 AgentOps 客户端
agentops.init('<INSERT YOUR API KEY HERE>')

# 可选:记录特定函数
@agentops.record_action('sample function being record')
def sample_function():
    # 你的函数代码
    pass

# 结束会话
agentops.end_session('Success')

应用案例和最佳实践

案例一:实时监控 AI 代理

通过 AgentOps,你可以实时监控 AI 代理的执行情况,包括会话回放、指标和实时监控工具。这有助于快速识别和响应代理故障和多代理交互问题。

案例二:成本管理

AgentOps 允许你跟踪和管理在 LLM 和 API 调用上的花费。通过详细的成本报告,你可以更好地控制预算并优化资源使用。

典型生态项目

CrewAI

CrewAI 是一个与 AgentOps 集成的代理框架,提供了自动监控功能。通过设置 AGENTOPS_API_KEY 环境变量,你的 Crew 代理将自动获得监控功能。

pip install git+https://github.com/AgentOps-AI/crewAI@git@main

AutoGen

AutoGen 是另一个与 AgentOps 集成的代理框架,通过简单的两行代码,你可以为 AutoGen 代理添加完整的可观察性和监控功能。

import agentops

agentops.init('<INSERT YOUR API KEY HERE>')

通过这些集成,你可以轻松地将 AgentOps 的功能扩展到多个代理框架中,提升你的 AI 代理项目的可观察性和稳定性。

agentopsPython SDK for agent evals and observability项目地址:https://gitcode.com/gh_mirrors/ag/agentops

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云忱川

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值