U-Mamba:增强生物医学图像分割中的长程依赖
U-Mamba 项目地址: https://gitcode.com/gh_mirrors/um/U-Mamba
项目基础介绍和主要编程语言
U-Mamba 是一个开源项目,专注于增强生物医学图像分割中的长程依赖。该项目主要使用 Python 编程语言,并依赖于 PyTorch 深度学习框架。U-Mamba 旨在通过其独特的架构设计,提升图像分割任务的性能,特别是在处理复杂的生物医学图像时。
项目核心功能
U-Mamba 的核心功能是通过其独特的 U-Mamba 模块来增强图像分割中的长程依赖。该模块包含两个连续的残差块(Residual blocks),随后是一个 Mamba 块,以进一步增强长程依赖。这种设计使得 U-Mamba 在处理生物医学图像时,能够更有效地捕捉图像中的复杂结构和细节,从而提高分割的准确性和鲁棒性。
项目最近更新的功能
U-Mamba 最近更新的功能包括:
- 模型训练支持:增加了对 2D 和 3D 模型的训练支持,用户可以根据自己的需求选择合适的模型进行训练。
- 数据预处理工具:提供了更强大的数据预处理工具,帮助用户更方便地准备训练数据。
- 推理功能增强:优化了推理过程,使得模型在预测测试案例时更加高效和准确。
- 路径设置灵活性:增加了路径设置的灵活性,用户可以根据自己的环境配置数据目录,方便已有 nnU-Net 设置的用户进行迁移和使用。
通过这些更新,U-Mamba 进一步提升了其在生物医学图像分割领域的应用价值和用户体验。