刷新多个SOTA!最新Mamba魔改版本超越transformer,GPU内存消耗减少74%

本文介绍了Mamba,一种结合RNN和CNN优势的高效序列建模方法,用于解决Transformer在处理长序列时的问题。特别关注了U-Mamba在生物医学图像分割中的应用,以及Weak-Mamba-UNet和Graph-Mamba在医疗图像和图数据处理中的创新。Swin-UMamba展示了Mamba在2D医学图像分割中的应用,通过预训练提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因模型规模的扩展和需要处理的序列不断变长,transformer逐渐出现计算量激增、计算效率下降等问题。为克服这些缺陷,研究者们提出了Mamba。

Mamba是一种创新的线性时间序列建模方法,它结合了递归神经网络(RNN)和卷积神经网络(CNN)的特点,以提高处理长序列数据时的计算效率。

Mamba的设计和实现都展现出在处理长序列时的优势,在语言建模方面成功超越transformer。因此,面向Mamba及其魔改变体的研究也逐渐成为了热门,出现了很多可挖掘的创新点。

为帮助同学们获取灵感,我整理了15个今年最新的Mamba魔改创新方案,这些变体大多应用于图像分割、文本摘要、点云分析等领域,比如多伦多大学团队提出的U-Mamba、在大型图上减少了高达74%GPU内存消耗的Graph-Mamba。

论文以及开源代码需要的同学看文末

U-Mamba

U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation

方法:本文介绍了一种新的架构U-Mamba,用于通用生物医学图像分割,它结合了CNN的局部模式识别和Mamba的全局上下文理解的优势。U-Mamba可以自动配置自身以适应不同的数据集,使其成为生物医学成像中多样化分割任务的多功能和灵活工具。

创新点:

  • U-Mamba是一种新的通用网络架构,用于生物医学图像的分割任务。

  • U-Mamba采用了创新的混合CNN-SSM架构,能够捕捉图像中的局部细粒度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值