因模型规模的扩展和需要处理的序列不断变长,transformer逐渐出现计算量激增、计算效率下降等问题。为克服这些缺陷,研究者们提出了Mamba。
Mamba是一种创新的线性时间序列建模方法,它结合了递归神经网络(RNN)和卷积神经网络(CNN)的特点,以提高处理长序列数据时的计算效率。
Mamba的设计和实现都展现出在处理长序列时的优势,在语言建模方面成功超越transformer。因此,面向Mamba及其魔改变体的研究也逐渐成为了热门,出现了很多可挖掘的创新点。
为帮助同学们获取灵感,我整理了15个今年最新的Mamba魔改创新方案,这些变体大多应用于图像分割、文本摘要、点云分析等领域,比如多伦多大学团队提出的U-Mamba、在大型图上减少了高达74%GPU内存消耗的Graph-Mamba。
论文以及开源代码需要的同学看文末
U-Mamba
U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation
方法:本文介绍了一种新的架构U-Mamba,用于通用生物医学图像分割,它结合了CNN的局部模式识别和Mamba的全局上下文理解的优势。U-Mamba可以自动配置自身以适应不同的数据集,使其成为生物医学成像中多样化分割任务的多功能和灵活工具。
创新点:
-
U-Mamba是一种新的通用网络架构,用于生物医学图像的分割任务。
-
U-Mamba采用了创新的混合CNN-SSM架构,能够捕捉图像中的局部细粒度