线性方程组(九)- 线性变换的矩阵

本文介绍了线性变换的矩阵表示,包括如何通过线性变换的标准矩阵来描述R2到R3的变换。讨论了满射与单射的概念,并通过实例解释了如何判断线性变换是否能够将R4映射到R3以及是否为一对一映射。此外,还探讨了R2中的几何线性变换,如旋转、对称、收缩、拉伸和剪切变换的性质。
摘要由CSDN通过智能技术生成

小结

  1. 线性变换的矩阵
  2. R 2 \mathbb{R}^{2} R2中的集合线性变换
  3. 满射与单射

线性变换的矩阵

I 2 = [ 1 0 0 1 ] \boldsymbol{I_2}=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} I2=[1001]的两列是 e 1 = [ 1 0 ] \boldsymbol{e_1}=\begin{bmatrix} 1 \\ 0 \end{bmatrix} e1=[10] e 2 = [ 0 1 ] \boldsymbol{e_2}=\begin{bmatrix} 0 \\ 1\end{bmatrix} e2=[01],设 T \boldsymbol{T} T R 2 \mathbb{R}^{2} R2 R 3 \mathbb{R}^{3} R3的线性变换,满足 T ( e 1 ) = [ 5 − 7 2 ] , T ( e 2 ) = [ − 3 8 0 ] \boldsymbol{T(e_1)}=\begin{bmatrix}5 \\ -7 \\ 2\end{bmatrix},\boldsymbol{T(e_2)}=\begin{bmatrix}-3 \\ 8 \\ 0\end{bmatrix} T(e1)=572T(e2)=380。求出 R 2 \mathbb{R}^{2} R2中任意向量 x \boldsymbol{x} x的像的公式。
解:
x = [ x 1 x 2 ] = x 1 [ 1 0 ] + x 2 [ 0 1 ] = x 1 e 1 + x 2 e 2 \boldsymbol{x}=\begin{bmatrix}x_1 \\ x_2\end{bmatrix}=x_1\begin{bmatrix}1 \\ 0\end{bmatrix} + x_2\begin{bmatrix}0 \\ 1\end{bmatrix}=x_1\boldsymbol{e_1} + x_2\boldsymbol{e_2} x=[x1x2]=x1[10]+x2[01]=x1e1+x2e2
因为 T \boldsymbol{T} T是线性变换,所以:
T ( x ) = T ( x 1 e 1 + x 2 e 2 ) = x 1 T ( e 1 ) + x 2 T ( e 2 ) = x 1 [ 5 − 7 2 ] + x 2 [ − 3 8 0 ] = [ 5 − 3 − 7 8 2 0 ] x \quad\boldsymbol{T(x)} = \boldsymbol{T(}x_1\boldsymbol{e_1} + x_2\boldsymbol{e_2)} \\ = x_1\boldsymbol{T(e_1)} + x_2\boldsymbol{T(e_2)} \\ = x_1\begin{bmatrix}5 \\ -7 \\ 2\end{bmatrix} + x_2\begin{bmatrix}-3 \\ 8 \\ 0\end{bmatrix} \\ = \begin{bmatrix} 5 & -3\\ -7 & 8 \\ 2 & 0\end{bmatrix}\boldsymbol{x} T(x)=T(x1e1+x2e2)=x1T(e1)+x

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值