[学习日志] 白板推导-概率图模型

本文介绍了概率图模型的基础知识,包括随机变量、加法法则、乘法法则、链式法则和贝叶斯法则。探讨了高维困境下如何简化计算,如通过独立假设、马尔可夫链和条件独立性假设。进一步讲解了有向图的贝叶斯网络和无向图的马尔可夫网络,以及贝叶斯网络的因子分解和条件独立性。文章还涉及马尔可夫随机场、变量消除和置信度传播算法,最后讨论了推断方法,如Max Product算法,并介绍了道德图和因子图的概念。
摘要由CSDN通过智能技术生成

背景介绍

随机变量的基础知识

对于多元随机变量X1,X2
P(X1)叫做边缘概率
P(X1,X2)叫做联合概率
P(X1|X2)叫做条件概率

加法法则

在这里插入图片描述

乘法法则

在这里插入图片描述

(以上两个法则是最基础的,其他都来源于此)

链式法则

在这里插入图片描述

贝叶斯法则

在这里插入图片描述
圈红的部分是以前语言模型常用的公式
后面是更细致的展开成积分形式

高维困境

以上都是以二维为例子,在高维中计算就会变复杂
比如下图中的联合概率公式,在维度增加时,复杂度呈等差数列求和上升

在这里插入图片描述

几种简化方式

假设相互独立

在这里插入图片描述

朴素贝叶斯分类——基于独立假设

在这里插入图片描述

马尔可夫链

全都独立有点太过理想化,实际应用往往不满足
马尔可夫链的思路就是,某一事件的发生只和前n个事件相关联
(完全相互独立可以说是0阶马尔可夫)
在这里插入图片描述

公式是一阶马尔可夫,横竖符号表示独立
也就是说i+1和i之前的项都无关(可能就只和i有关)

HMM 隐马尔可夫模型
条件独立性假设

马尔科夫链也太过理想化,因为可能会有多依赖或跳跃依赖

因此引入条件独行性,公式如下
在这里插入图片描述
公式中XA,XB,XC都是随机变量的集合,且不相交
集合就能解决多依赖和跳跃依赖的问题

解释一下就是:
在Xc集合中的随机变量确定时,XA,XB集合中的随机变量相互独立

通过拓扑排序,就可以很简单的构造一个概率图

有向图-贝叶斯网络

无向图-马尔可夫网络/马尔可夫随机场

贝叶斯网络

因子分解

在这里插入图片描述

条件独立性

在这里插入图片描述
这里用图解释了所谓的条件独立性
也证明了有向图(贝叶斯网络)是包含了条件独立性信息的

上图这种模式的链接,称作tail to tail
可以总结:在尾巴指向的变量前提下,箭头指向的两个随机变量相互独立


在这里插入图片描述
这张图的模式的链接,称作head to tail
可以总结:在中间变量的前提下,两边的两个随机变量相互独立


在这里插入图片描述
这张图这种模式的链接,称作head to head
可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值