凸优化中的基本概念

1.1 什么是凸集?

简单来说, 凸集是一个点集, 这个点集有一个性质, 就是在这个集合中任取不同的两个点x和y, 他们之间的线段(包括端点)上的点都属于这个点集,那么就说这个点集是一个凸集。

比如下图中左边的图形是凸集,而右边不是,因为我们可以找到两个点,使它们之间的线段上的点不在集合中

数学上,凸集的定义如下:

给定集合 C C x,yC ∀x,y∈C 0θ1 0≤θ≤1,如果有

θx+(1θy)C θx+(1−θy)∈C

我们就称集合C是凸集,我们把点 θx+(1θy) θx+(1−θy)称为x和y的凸组合。

1.2 什么是凸函数?

假设有一个函数 f:RnR f:Rn→R,记其定义域为 D(f) D(f),如果 D(f) D(f)是凸集,且在其中任取两个点 x,y x,y,满足以下性质:

f(θx+(1θy))θf(x)+(1θ)f(y) f(θx+(1−θy))≤θf(x)+(1−θ)f(y)

那么就称 f f为凸函数。

注意:定义域是凸集这个要求不是必须的,其出发点只是为了使x,y的凸组合有定义

关于凸函数,直观上可以用下图来加深理解:

简单来说,我们在定义域任取两个点x,y, 连接他们得到一条线段,如果这个线段上的点都位于对应函数值上方,我们就说该函数是一个凸函数。

更进一步,如果 xy x≠y 0<θ<1 0<θ<1我们称 f f是严格凸的。如果 f −f是凸函数,那么 f f就是凹函数。如果 f −f是严格凸函数,那么 f f就是严格凹函数。

1.3 凸函数的等价判别方法

上面我们讲了什么是凸函数,然而这个定义在现实中很难用于判断一个函数是不是凸的,因此介绍几个等价的定义。

1.3.1 一阶近似

假设函数 f:RnR f:Rn→R是可导函数(也就是说 f(x) f(x)的梯度 xf(x) ∇xf(x)在整个定义域上都存在),则 f f是凸函数当且仅当 其定义域是凸集,且对于所有的 x,yD(f) x,y∈D(f)有下式成立:

f(y)f(x)+xf(x)T(yx) f(y)≥f(x)+∇xf(x)T(y−x)

 我们将 f(x)+xf(x)T(yx) f(x)+∇xf(x)T(y−x)叫做对f的一阶近似,其物理意义实际上是经过点x的切平面,我们用这个切平面上的点来近似 f(y) f(y)。这个公式的含义是:如果f是凸函数,那么它的一阶近似值始终位于函数值的下方。

 1.3.2 二阶近似

假设函数 f:RnR f:Rn→R二阶可导(即海塞矩阵在定义域上都有定义),则f是凸函数当且仅当 其定义域是凸集且其海塞矩阵半正定,即:

2xf(x)0 ∇x2f(x)⪰0

可能有些同学忘了海塞矩阵长什么样了,这里提一下。假设我们的变量来自n维空间,即 xRn x∈Rn,我们记 x=(x1,x2,...,xn)={xi}ni=1 x=(x1,x2,...,xn)={xi}i=1n,即由n个变量组成的向量。那么海塞矩阵(记为H吧)是一个 n×n n×n的方块矩阵,且

Hij=2f(x)xixj Hij=∂2f(x)∂xi∂xj

 也就是说, Hij Hij是f(x)分别对 xi xi xj xj进行求导两次得到的。

1.4 凸优化问题

上面已经介绍了凸集和凸函数,是时候到凸优化了吧? 别急,在介绍凸优化概念之前再啰嗦两句。

1.4.1 水平子集(sublevel sets)

由凸函数的概念出发,我们可以引出水平子集(sublevel set)的概念。假定f(x)是一个凸函数, 给定一个实数 αR α∈R,我们把集合

{xD(f)|f(x)α} {x∈D(f)|f(x)≤α}

叫做 α α−水平子集。 也就是说 α α水平子集是所有满足 f(x)α f(x)≤α的点构成的集合。利用凸函数性质,我们可以证明水平子集也是凸集:

f(θx+(1θy))θf(x)+(1θ)f(y)θα+(1θ)α=α f(θx+(1−θy))≤θf(x)+(1−θ)f(y)≤θα+(1−θ)α=α

水平子集告诉我们,给凸函数添加一个上限,定义域内剩下的点构成的点集还是一个凸集。

1.4.2 仿射函数(affine functions)

数学上,我们把形如

h(x)=Ax+b h(x)=Ax+b

的函数叫做仿射函数。其中, An×m An×m,一个向量 bRm b∈Rm。直观上理解,仿射函数将一个n维空间的向量通过线性变换A映射到m维空间,并在其基础上加上向量b,进行了平移。

同理,我们可以证明,点集

{xD(h)|h(x)=0} {x∈D(h)|h(x)=0}

是一个凸集,证明略。

1.4.3 凸优化(convex optimization)

那么回到凸优化问题上来, 什么是一个凸优化问题?

一个凸优化问题可以定义为:

其中f是一个凸函数,C是一个凸集。根据先前介绍过的水平子集等概念,上面问题又可以等价写为:

其中,g(x)是凸函数,h(x)是仿射函数。 也就是说,原约束集C被我们表示为一系列凸集的交集(数学上可以证明,凸集的交集还是凸集)。

1.4.4 局部最优(local optima)和全局最优(global optima)

局部最优:周围小范围 内没有比我小的点。

数学定义:

如果存在 R>0 R>0,对于所有的z: xz2<R ∥x−z∥2<R,有 f(x)f(z) f(x)≤f(z),那么就称x是一个局部最优点。

全局最优:我就是整个定义域中的最小的点。

数学定义:

如果对于定义域内的所有z,有 f(x)f(z) f(x)≤f(z),则称x是全局最优。

现在回到凸优化问题上, 对于凸优化问题,有一个很重要的结论:

对于凸函数来讲, 局部最优就是全局最优。证明如下:

我们用反证法证明。设 x x是一个局部最优,但不是全局最优,于是我们假设全局最优是 z z∗,那么我们有 f(x)>f(z) f(x)>f(z∗)

由x的局部最优性质,我们有 :

存在 R>0 R>0,对于所有的z: xz2<R ∥x−z∥2<R,有 f(x)f(z) f(x)≤f(z)

我们考虑 x x z z∗的凸组合: z=θx+(1θ)z z=θx+(1−θ)z∗,无论 z z∗在哪里,我们总可以找到一个 θ θ,使得 z z位于 x x的邻域内,使得 f(x)f(z) f(x)≤f(z)

另一方面,由凸函数性质,我们有:

f(z)=f(θx+(1θ)z)θf(x)+(1θ)f(z)<θf(x)+(1θ)f(x)=f(x) f(z)=f(θx+(1−θ)z∗)≤θf(x)+(1−θ)f(z∗)<θf(x)+(1−θ)f(x)=f(x)

由此得 f(z)<f(x) f(z)<f(x),这与 f(x)f(z) f(x)≤f(z)矛盾, 于是我们证明了如果 x x是局部最优,那么同时它也是全局最优。

 1.5 常见凸优化问题

  •  线性规划

如果 f f gi gi都是仿射函数,则凸优化问题变为了线性规划问题:

 

 

  • 二次规划

线性规划中,如果 f f变为一个凸二次函数,则凸优化问题变为二次规划:

  • 二次约束二次规划

f f gi gi都是凸二次函数

  • 半定规划

其中, XSn X∈Sn是一个n维对称方阵,并且我们将它约束为半正定矩阵。 C,Ai C,Ai都是对称矩阵。这和前面的问题有点不太相同,前面是优化一个向量,而这里是优化一个矩阵。

 

 

 参考:

http://cs229.stanford.edu/section/cs229-cvxopt.pdf

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值