循环神经网络的应用探索
1. 循环神经网络概述
循环神经网络(RNN)在众多领域有着广泛的应用。为了便于解释和图示说明,很多时候会使用单层循环网络,但在实际应用中,多层长短期记忆网络(LSTM)或双向LSTM更为常用,因为它们能提供更好的性能。而且,在各种应用场景中,用多层或双向LSTM替代单层RNN是比较简单直接的。
2. 自动图像字幕生成
- 训练数据与学习方式 :图像字幕生成的训练数据是图像 - 字幕对。例如,一张来自美国国家航空航天局网站的图片,其字幕为“宇宙冬日仙境”。可能会有数十万这样的图像 - 字幕对,用于训练神经网络的权重。训练完成后,就可以对未知的测试图像预测字幕,这可以看作是一种图像到序列的学习。
- 卷积神经网络的作用 :自动图像字幕生成需要一个单独的神经网络来学习图像的表示,常用的是卷积神经网络(CNN)。CNN会输出一个q维向量v作为图像的表示,这个向量仅在第一个时间步作为输入传入神经网络。为了处理这个额外输入,需要一个p × q的矩阵Wih,将图像表示映射到隐藏层。
- 更新方程的修改 :
- (h_1 = \tanh(W_{xh}x_1 + W_{ih}v))
- (h_t = \tanh(W_{xh}x_t + W_{hh}h_{t - 1}) \quad \forall t \geq 2)
- (y_t = W_{hy}h_t)
- 联合训练
超级会员免费看
订阅专栏 解锁全文
6466

被折叠的 条评论
为什么被折叠?



