45、循环神经网络的应用探索

循环神经网络的应用探索

1. 循环神经网络概述

循环神经网络(RNN)在众多领域有着广泛的应用。为了便于解释和图示说明,很多时候会使用单层循环网络,但在实际应用中,多层长短期记忆网络(LSTM)或双向LSTM更为常用,因为它们能提供更好的性能。而且,在各种应用场景中,用多层或双向LSTM替代单层RNN是比较简单直接的。

2. 自动图像字幕生成
  • 训练数据与学习方式 :图像字幕生成的训练数据是图像 - 字幕对。例如,一张来自美国国家航空航天局网站的图片,其字幕为“宇宙冬日仙境”。可能会有数十万这样的图像 - 字幕对,用于训练神经网络的权重。训练完成后,就可以对未知的测试图像预测字幕,这可以看作是一种图像到序列的学习。
  • 卷积神经网络的作用 :自动图像字幕生成需要一个单独的神经网络来学习图像的表示,常用的是卷积神经网络(CNN)。CNN会输出一个q维向量v作为图像的表示,这个向量仅在第一个时间步作为输入传入神经网络。为了处理这个额外输入,需要一个p × q的矩阵Wih,将图像表示映射到隐藏层。
  • 更新方程的修改
    • (h_1 = \tanh(W_{xh}x_1 + W_{ih}v))
    • (h_t = \tanh(W_{xh}x_t + W_{hh}h_{t - 1}) \quad \forall t \geq 2)
    • (y_t = W_{hy}h_t)
  • 联合训练
STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份关于STM32电机控制的无传感器版本代码注释资源,聚焦于龙贝格观测器在永磁同步电机(PMSM)无感控制中的应用。内容涵盖三电阻双通道AD采样技术、前馈控制、弱磁控制及斜坡启动等关键控制策略的实现方法,旨在通过详细的代码解析帮助开发者深入理解基于STM32平台的高性能电机控制算法设计与工程实现。文档适用于从事电机控制开发的技术人员,重点解析了无位置传感器控制下的转子初始定位、速度估算与系统稳定性优化等问题。; 适合人群:具备一定嵌入式开发基础,熟悉STM32平台及电机控制原理的工程师或研究人员,尤其适合从事无感FOC开发的中高级技术人员。; 使用场景及目标:①掌握龙贝格观测器在PMSM无感控制中的建模与实现;②理解三电阻采样与双AD同步采集的硬件匹配与软件处理机制;③实现前馈补偿提升动态响应、弱磁扩速控制策略以及平稳斜坡启动过程;④为实际项目中调试和优化无感FOC系统提供代码参考和技术支持; 阅读建议:建议结合STM32电机控制硬件平台进行代码对照阅读与实验验证,重点关注观测器设计、电流采样校准、PI参数整定及各控制模块之间的协同逻辑,建议配合示波器进行信号观测以加深对控制时序与性能表现的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值