08 以线性变换的眼光看叉积

本文通过线性变换探讨叉积,解释了如何将三维向量u和v关联到一维空间,揭示其与对偶向量的关系,从而清晰地展示计算过程与几何意义的联系。
摘要由CSDN通过智能技术生成

以线性变换的眼光看叉积


这是关于3Blue1Brown "线性代数的本质"的学习笔记。

回顾

在这里插入图片描述

图1 叉积的运算

总体计划

1、根据 u ⃗ \vec{u} u v ⃗ \vec{v} v 定义一个三维到一维空间的线性变换
2、将这个变换与三维空间中的对偶向量相关联
3、说明这个对偶向量就是 u ⃗ \vec{u} u X v ⃗ \vec{v} v
之所以这样做,是因为理解这个变换能够解释清楚叉积的计算过程和几何含义之间的关系。
在这里插入图片描述

图2 叉积的计算过程和几何含义之间的关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值