深入理解协方差(图文详解)

本文详细介绍了方差的概念及其在衡量样本偏离均值程度中的应用,并通过直观的图形解释了协方差的含义,包括如何通过协方差判断变量间的相关性,以及影响协方差的因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先从方差开始,我们有一组样本x1、x2、x3····xn,这组样本的均值为EX,每一个样本都与EX之间存在误差,那么这组样本的方差被定义为:所有误差的和的均值,也即[Σ(xi-EX)^2]/(n-1),

方差的作用就是用来“衡量样本偏离均值的程度”。

下面开始看协方差:

 

仔细观察上述定义式,可知:如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

下面再从直观上理解一下上面这段话,假设我们拿到了一组(X, Y)的样本如下图(a)所示。然后让这组样本中的X、Y各自减掉自己的期望,得到新的一组样本,显然这组新样本的均值就变成了(0,0),这组新样本会分布在原点周围,如下图(b)所示。如果我们再把图b中的样本的每一个点的X乘以Y得到积,把积画在图(c)中,那么图b的二维样本就会退化为一系列一维的点,而且,下图b的一三象限的点的积会分布到下图c的正半轴,二四象限的点会分布到负半轴,,根据上面的定义式,图c中样本的均值,就是图1中XY的协方差,从直观上看它的均值接近于0,物理意义就是,X和Y是几乎完全不相关。

  图a              图b          图c

注意:上面的协方差定义中,EX和EY是数学期望,是个精确的理论值,而不是样本均值(样本数目无穷多时,样本均值会无穷接近于数学期望,这是大数定律之一,证明过程大学都学过的,可惜忘干净了),但是X、Y在没有理论概率分布表达式的情景中,我们只能用n个样本的和除以n来代替数学期望。

下面我们再来看一个X和Y正相关的例子,也即在某次我们同时对xy采样时,当x的采样值>x的均值时,y的样本也一般是>y的均值。

图a图b图c

XY的采样值如上图a所示,各自减掉自己的均值后,得到的新样本如图b所示,图b中的样本中的每个点把x*y,得到一维样本如图c所示,显然,由图b转换为图c的时候,只有图b中第二象限的两个点落到了图c的负半轴,图b的其余点都落到了图c的正半轴,图c中样本的均值显然是个正值,这个正值就是图a的样本的协方差。

图c的均值很大,也就是说图a的样本的协方差很大,那么分析一下图c的均值大的原因,那是因为图b中的点x*y的积大,为什么积这么大,因为图a的X、Y的样本偏离各自的均值EX、EY太大了。换句话说,如何才能使得图c中的样本均值变小呢,也即如何才能使图a的样本的协方差变小呢?显然有两个办法:(1)让图c中的每一个点的数值变小,也即让图b中的点都靠近原点,也即让图a的点都靠近X、Y各自的均值;(2)增加图c中负半轴的点的数量,也即增加图b中二四象限中的点的数量,也即让图a的点在反对角线上也出现一些。这两种方法也就指出了,协方差小的原因:一是X、Y各自的方差要小,二是X、Y相关性要若。

 

根据以上两组图形,以及分析,我们得知:

两个因素会影响协方差的值:

1、两个变量各自的方差不变的情况下,两个变量的正相关性越强烈,协方差越大,负相关性越强烈,协方差越小;

2、两个变量的相关性不变的情况下,x或y变量的方差越大,协方差的绝对值越大。(“或”的意思是,x的方差大,或者y的大,或者它俩的都大);

因素1对协方差的影响是“绝对”大小(带符号),因素2影响的是“绝对值”的大小

 

 

反过来的推论: 如果协方差的值是个很大的正数,我们可以得到两个结论:

(1) 两者有很大概率是正相关的;

(2) 这个值很大到底是因为①:正相关很强烈造成的呢?还是②:x或y的方差很大造成的呢,这个①和②我们是区分不出来的

注意上面的(1)我们说很大概率正相关,而不是说一定正相关,这么大的正值,难道还不是强烈正相关吗?!!原因是什么?就在于②,因为采样并不能完全代表真实情况,假设两者是微弱正相关,或者不相关,或者微弱负相关,这3种情况采样的结果计算出的协方差都有可能是正值,这时即使X、Y不是强烈正相关,只要x或y的方差大,仍然会造成协方差变成大的正数。
那么如何衡量正负相关性呢,显然要把x或y的方差,从对协方差的影响中剔除掉,这样协方差剩余的部分就能看出相关性的强烈程度了。剔除的方法也很简单,协方差除以xy的标准差就行了。得出的结果就被成为相关系数

为什么剔除信息的方法是除以标准差呢?其实从协方差的定义式就能看出端倪,E[(X-EX)(Y-EY)],显然协方差的绝对值变大的根本原因就是每一个(X-EX)(Y-EY)变大

 

上面讲的是两个变量之间的协方差,如果有n个变量X1、X2、···Xn,两两之间的协方差,就可以组成协方差矩阵,我们定义:

那么上述n个变量的协方差矩阵就是:

,其中,

 

如果有:

那么Y的协方差矩阵为:

其中,

再利用,可以容易证明,这个式子就是卡尔曼滤波的第二个公式。

<think>好的,用户之前已经问过关于飞机制造中测量两个水平放置圆柱同轴度的方案,现在他再次提问,要求更清晰地解释传感器的安装位置和原理。我需要回顾之前的回答,看看哪里可能不够清楚,并针对性地进行补充。 首先,用户之前的提问中,我提到了使用龙门架和旋转臂安装激光传感器,但可能示意图不够详细,或者文字描述不够具体。用户现在需要更清晰的安装位置说明,可能需要更详细的步骤分解和图文描述,但由于不能使用图片,必须用文字更详细地描述。 在原理部分,用户可能对三维坐标重建和轴线拟合的具体过程有疑问。需要更详细地解释激光传感器如何通过旋转和移动获取数据,以及如何将这些数据转化为圆柱的轴线参数。此外,可能需要用更直观的方式说明同轴度的计算方式,比如几何上的偏差分析。 另外,用户可能对传感器的布局和对称性不太清楚,需要进一步解释为什么选择四个传感器,上下左右各一对,以及如何通过对称布局消除误差。可能还需要解释龙门架移动的路径,如何覆盖整个圆柱的长度,确保测量的全面性。 还要考虑到用户可能对实际应用中的操作步骤有疑问,比如校准过程、温度补偿的具体实现,或者如何确保测量精度在0.5mm以内。需要结合这些因素,将安装位置和原理更详细地分解,可能分步骤或分部分进行说明。 最后,要确保语言简洁明了,避免专业术语过多,但又要准确。可能需要用比喻或类比的方法,让读者更容易理解传感器布局和测量原理。同时,检查是否有遗漏的关键点,如辅助传感器的作用,如旋转编码器和直线光栅尺的具体功能,如何与主控系统协同工作。</think>以下是针对双圆柱同轴度测量系统的传感器安装位置和测量原理的详细解析,通过三维空间定位逻辑和机械结构分解进行说明: --- ### **一、传感器安装拓扑图(文字版三维描述)** ``` 龙门架横梁(X轴导轨) ↑ [旋转臂]━┳━[伺服电机]━┳━[旋转臂] ┃ ┃ ▼ ▼ 激光传感器组1 激光传感器组2 / \ / \ 上 下 左 右 上 下 左 右 (垂直交叉布局) (垂直交叉布局) ``` #### **1. 核心传感器布局(4组8传感器)** | 传感器组 | 安装位置 | 测量方向 | 功能描述 | |----------|-----------------------|----------------|---------------------------| | 组1-上 | 旋转臂顶端 | 垂直向下发射 | 捕捉圆柱上表面轮廓 | | 组1-下 | 旋转臂底端 | 垂直向上发射 | 捕捉圆柱下表面轮廓 | | 组2-左 | 旋转臂左侧延伸支架 | 水平向右发射 | 捕捉圆柱左侧轮廓 | | 组2-右 | 旋转臂右侧延伸支架 | 水平向左发射 | 捕捉圆柱右侧轮廓 | **对称性设计**:两组传感器呈中心对称布局,通过交叉测量消除单侧误差 --- ### **二、机械结构动态配合原理** #### **1. 三轴协同运动** | 运动轴 | 驱动方式 | 行程范围 | 定位精度 | |--------|---------------|--------------|-----------| | X轴 | 直线电机 | 0-6m(可调) | ±0.01mm | | θ轴 | 伺服减速电机 | 0-360° | ±0.005° | | Z轴 | 电动升降柱 | ±50mm | ±0.1mm | **运动逻辑**: ``` for x in 0 → L(步进10mm): 旋转臂转动θ从0°→360°(步进1°) 同时触发8个传感器采样 通过Z轴微调保持测量距离恒定(20±2mm) ``` --- ### **三、测量原理深度解析** #### **1. 点云数据生成模型** **坐标转换公式**: ``` X_total = X_光栅尺 + R·cosθ Y_total = Y_初始偏移 + R·sinθ Z_total = 激光测距值 + Z补偿量 ``` (其中R为旋转臂半径,θ为编码器角度) **数据密度计算**: - 轴向分辨率:10mm/点(X轴步进) - 周向分辨率:1°/点 → 圆周方向约1.7mm/点(Φ200mm圆柱) - 单圆柱单次扫描数据量:600mm/10mm × 360° = 21,600点 #### **2. 轴线拟合算法流程** ```python # 圆柱轴线拟合伪代码 def cylinder_fitting(points): # 第一阶段:粗拟合 centroid = np.mean(points, axis=0) # 计算点云质心 # 第二阶段:精迭代 for _ in range(10): # 迭代优化 # 计算各点到当前轴线的距离 errors = [distance_to_axis(point, current_axis) for point in points] # 用RANSAC算法剔除离群点 inliers = points[errors < 3*sigma] # 最小二乘法更新轴线参数 new_axis = least_squares(inliers) return new_axis ``` **关键参数**: - 拟合残差阈值:≤0.2mm - 迭代收敛条件:Δθ<0.01°, Δd<0.05mm --- ### **四、误差抑制技术详解** #### **1. 安装误差补偿矩阵** 建立九参数补偿模型: ``` [ΔX ΔY ΔZ]^T = K·[X Y Z θ T V]^T + B ``` 其中: - K:温度/角度/位置耦合系数矩阵(3×6) - B:基础偏移量向量 - T:温度传感器读数 - V:振动传感器频谱特征值 #### **2. 实时补偿案例** 当检测到Y方向振动幅度>0.05g时: 1. 启动加速度计数据融合 2. 采用卡尔曼滤波修正测量值: ```matlab Q = diag([0.01 0.01 0.01]); % 过程噪声协方差 R = diag([0.1 0.1 0.1]); % 观测噪声协方差 [x_est, P] = kalman_filter(z, Q, R); ``` --- ### **五、典型安装剖面图(文字描述)** ``` 剖面视角:垂直于圆柱轴线方向 ------------------------------------------- | 龙门立柱 旋转机构外壳 | | █ ┌──────────┐ | | █ │ 编码器 │ | | █ ├──────────┤ | | █ │ 激光器组1│◄→20mm测量距| | █ ├──────────┤ | | █ │ 激光器组2│ | | █ └──────────┘ | | 被测圆柱体 | ------------------------------------------- ``` **安装间隙要求**: - 传感器端面距圆柱表面:20±2mm - 旋转臂径向跳动:<0.01mm - 结构刚性:一阶固有频率>100Hz --- ### **六、测量系统标定流程** 1. **几何标定**: - 使用标准圆柱(标称误差±0.005mm) - 全行程扫描建立空间误差地图 2. **动态标定**: - 施加0.1-10Hz振动激励 - 记录传感器响应曲线 3. **温度标定**: - 在20-35℃范围内以5℃为步进 - 记录热膨胀导致的测量漂移 经标定后系统综合精度可达: - 静态测量:±0.15mm - 动态测量:±0.35mm --- 该方案通过多传感器空间融合测量和智能误差补偿,在航空制造苛刻环境下仍可稳定实现0.5mm同轴度检测要求。实际部署时建议采用碳纤维复合材料测量臂,在保证刚性的同时降低热膨胀影响。
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值