[论文学习] Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization[1]

本文深入研究了基于方位信息的编队控制,介绍了Bearing Rigidity理论在任意维度的拓展,强调了其在群体控制中的实践意义。通过对bearing equivalent、bearing congruent和bearing rigidity的定义和分析,揭示了它们之间的关系,为实现全局编队稳定性提供了理论基础。此外,论文还讨论了控制率的设计,证明了控制方案对平移和放缩的无关性,确保了编队结构的稳定性,并探讨了碰撞规避策略。
摘要由CSDN通过智能技术生成

1 论文概述与定义

首先,将本文的内容整理到CSDN上是因为,这篇文章的数学推导太帅了,概念多,以至于我边看边打草稿推导很容易思路混乱,只好逐步梳理。
本文内容提出了基于纯方位信息的编队控制。使用群体间的相对位置进行编队已经有很多理论了,但是在实际应用中得到精确的相对位置是不容易的事情,尤其在室内,GPS失效的时候。然而获取相对方位就容易的多,只需要在相机图像内找到目标就行。这篇文章感觉有很强的实践意义,而且,很帅。

以下定义在后文中不会在使用时再特别声明:

  • Null() Range() rank() 分别表示核空间,值空间,秩
  • I d ∈ R d × d I_d\in\mathbb{R}^{d\times d } IdRd×d 表示d维单位阵
  • 1 : = [ 1 , ⋯   , 1 ] T \bold{1} := [1,\cdots , 1]^T 1:=[1,,1]T
  • ⊗ \otimes 表示克罗内克积(Kronecker product)
  • G = ( V , E ) G=( \mathcal{V},\mathcal{E} ) G=(V,E) 表示无向图, E \mathcal{E} E包含了所有结点, E ⫅ V × V \mathcal{E} \subseteqq \mathcal{V} \times \mathcal{V} EV×V包含了所有的连接点对, H H H表示有向图的邻接矩阵

2 Bearing Rigidity In Arbitrary Dimensions

在这个部分里,作者将bearing rigidity理论拓展到了任意维度。如果是用于群体编队控制,那么应用维度应该主要还是在2维和3维,如何运用到更高维度?我在思考并期待,这一定能带来更多有趣的结论。

2.1 基本定义

由于图仅仅描述了连接结构,本文定义了含有确定结点位置的图,称为framework,记为 G ( p ) G(p) G(p),其中p为结点集合
Given a finite collection of n points  { p i } i = 1 n ⊂ R d denote  p = [ p 1 T , ⋯   , p n T ] T ∈ R d n \text{Given a finite collection of n points }\{p_i\}^n_{i=1}\subset \mathbb{R}^d \\ \text{denote } p=[p_1^T,\cdots, p_n^T]^T \in \mathbb{R}^{dn} Given a finite collection of n points { pi}i=1nRddenote p=[p1T,,pnT]TRdn
对于一个给定的framework,G( p )可以定义:
e i j : = p j − p i ,   g i j : = e i j ∣ ∣ e i j ∣ ∣ ,   ∀ ( i , j ) ∈ E e_{ij}:=p_j-p_i, \ g_{ij}:=\frac{e_{ij}}{||e_{ij}||}, \ \forall(i,j)\in \mathcal{E} eij:=pjpi, gij:=eijeij, (i,j)E
显然其中的 g i j g_{ij} gij由结点i指向结点j的单位方向向量,这应该就是我们直接获取到的信息

2.2 用于平行检验的投影映射

由于理论中频繁使用方位的概念,对于距离,可以用距离的摸长来定义相同,那么对于方位,自然就是用向量的平行来定义相同,所以我们需要有一种能够快速检验两个高维向量是否平行的工具。
定义投影映射 P : R d → R d × d P:\mathbb{R}^d\rightarrow\mathbb{R}^{d\times d} P:RdRd×d
P ( x ) : = I d − x x T ∣ ∣ x ∣ ∣ 2 For notational simplicity, dote  P x = P ( x ) P(x):=I_d-\frac{xx^T}{||x||^2} \\ \text{For notational simplicity, dote } P_x = P(x) P(x):=Idx2xxTFor notational simplicity, dote Px=P(x)
直观上来讲,P将x映射为Px,Px是投影映射,可以将任意
d维向量映射到x的正交面上,那么如果向量y与向量x相互平行,那么Px作用于y就会得到0,或者说向量y与x相互垂直时,Px作用与y应该还是y本身

2.3 Bearing rigidity theory的概念定义

接下来要给出三个关键的定义:

  • (Bearing Equivalency) 如果对 ∀ ( i , j ) ∈ E \forall (i,j)\in \mathcal{E} (i,j)E,都满足 P ( p i − p j ) ( p i ′ − p j ′ ) = 0 P_{(p_i-p_j)}(p'_i-p'_j)=0 P(pipj)(pipj)=0,那么Framework G ( p ) \mathcal{G}(p) G(p) G ( p ′ ) \mathcal{G}(p') G(p)是Bearing equivalent的。翻译一下,两个结构中所有相连接的点,对应的连线是平行的
  • (Bearing Congruency) 如果对 ∀ i , j ∈ V \forall i,j\in \mathcal{V} i,jV,都满足 P ( p i − p j ) ( p i ′ − p j ′ ) = 0 P_{(p_i-p_j)}(p'_i-p'_j)=0 P(pipj)(pipj)=0,那么Framework G ( p ) \mathcal{G}(p) G(p) G ( p ′ ) \mathcal{G}(p') G(p)是Bearing congruent的。翻译一下,两个结构中所有的点,对应的连线是平行的

想象一下,假设四个点相邻连接,构成四边形。那么正方形和长方形就是bearing equivalent的,但是他们却不是bearing congruent的。
我们不妨设想,直观上什么样的结构是bearing congruent的,一个结构的平移或放缩和它本身的bearing congruent的。 或者说bearing congruent的两个结构应该具有相同的形状。bearing equivalent的条件就更加宽松。

  • (Bearing Rigidity) 如果存在一个常数 ϵ > 0 \epsilon>0 ϵ>0,使得所有满足:1. G ( p ) \mathcal{G}(p) G(p)是bearing equivalent的。2. ∣ ∣ p ′ − p ∣ ∣ < ϵ ||p'-p||<\epsilon pp<ϵ G ( p ′ ) \mathcal{G}(p') G(p),都与 G ( p ) \mathcal{G}(p) G(p)是bearing congruent的,那么 G ( p ) \mathcal{G}(p) G(p)就是bearing rigidity的
  • (Global Bearing Rigidity) 如果所有与 G ( p ) \mathcal{G}(p) G(p)是bearing equivalent的framework同时也和 G ( p ) \mathcal{G}(p) G(p)是bearing congruent的, 那么 G ( p ) \mathcal{G}(p) G(p)就是Global bearing rigidity的

此时再和之前的两个概念结合起来,我们探讨定义它们的意义在哪。如果要控制编队结构,我当然希望结构能根据我的命令变化,对于纯方位的控制(Bearing Only),我的命令只能够是相对的方位,因此,我的目标结构必须被相对方位唯一确定,否则相同的命令会出现多个理论目标结构。 这时候你就会发现,如果不考虑放缩或平移的话,这不正是bearing congruent的概念吗?但是问题在于,实际控制中,我无法保证每一个个体都获知其余所有个体的相对方位,我只能知道相连接的个体之间的相对方位,这正是bearing equivalent的概念。于是,我希望由我仅仅知道的bearing equivalent也能导出bearing congruent,所以要求了目标结构具备Global Bearing Rigidity。

2.4 Infinitesimal bearing rigidity

这个概念是bearing rigidity理论中最重要的概念之一,后续会证明,只有infinitesimal bearing rigid的framework,才能在给定位移和放缩后被唯一确定,所以单独开了一个小结去阐明它的定义。
首先借用2.1中的基本定义,只不过这里并不关心连接关系,于是将 e i j e_{ij} eij写为 e k , e = [ e 1 T , ⋯   , e m T ] e_k,e=[e_1^T,\cdots, e_m^T] ek,e=[e1T,,emT],将他们直接排列开就好了。同样的, g = [ g 1 T , ⋯   , g m T ] g=[g_1^T,\cdots, g_m^T] g=[g1T,,gmT]
经过简单的推导,我们很容易发现:
denote  H ˉ = H ⊗ I d e = H ˉ p (2.4.1) \text{denote } \bar{H}=H \otimes I_d \\ e=\bar Hp \tag{2.4.1} denote Hˉ=HIde=Hˉp(2.4.1)
既然已经有了p到e的映射,不妨再定义一个p到g的映射吧!毕竟g才是更直接的信息啊。
F B ( p ) : = g (2.4.2) F_B(p):=g \tag{2.4.2} FB(p):=g(2.4.2)
上式被称为bearing function F B : R d n → R d m F_B:\mathbb{R}^{dn}\rightarrow\mathbb{R}^{dm} FB:RdnRdm

bearing rigidity matrix被定义为bearing function的雅克比矩阵 :
R ( p ) : = ∂ F B ( p ) ∂ p ∈ R d m × d n R(p):=\frac{\partial F_B(p)}{\partial p}\in \mathbb{R}^{dm\times dn} R(p):=pFB(p)Rdm×dn
这个东西不是很显然,可以稍加计算一下:
from  g k = e k ∣ ∣ e k ∣ ∣  we obtain  ∂ g k ∂ e k = 1 ∣ ∣ e k ∣ ∣ ( I d − e k e k T ∣ ∣ e k ∣ ∣ 2 ) = P g k ∣ ∣ e k ∣ ∣ as a result  ∂ F B ( p ) ∂ e = d i a g ( P g k / ∣ ∣ e k ∣ ∣ ) then  R ( p ) = ∂ F B ( p ) ∂ p = ∂ F B ( p ) ∂ e ∂ e ∂ p = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) H ˉ (2.4.3) \text{from }g_k=\frac{e_k}{||e_k||}\\\text{ we obtain }\frac{\partial g_k}{\partial e_k}=\frac{1}{||e_k||}(I_d-\frac{e_ke_k^T}{||e_k||^2})=\frac{P_{g_k}}{||e_k||} \\ \text{as a result }\frac{\partial F_B(p)}{\partial e}=diag(P_{g_k}/||e_k||) \\ \text{then } R(p)=\frac{\partial F_B(p)}{\partial p} = \frac{\partial F_B(p)}{\partial e}\frac{\partial e}{\partial p}=diag(\frac{P_{g_k}}{||e_k||})\bar H \tag{2.4.3} from gk=ekek we obtain ekgk=ek1(Idek2ekekT)=ekPgkas a result eFB(p)=diag(Pgk/ek)then R(p)=pFB(p)=eFB(p)pe=diag(ekPgk)Hˉ(2.4.3)

其实到这里容易让人一头雾水,为什么要定义bearing rigidity matrix?它只是一个映射的变化率,它有什么具体的意义吗?经过简单的计算我认为它是一个“矩阵版本”的投影映射运算器,方便对问题进行计算分析。我们知道对于一种连接关系 G \mathcal{G} G,向量 p p p可以唯一确定一种编队结构,那么不妨假设两个不同的向量 p , p ′ p,p' p,p,做以下运算:
R ( p ) p ′ = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) H ˉ p ′ = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) e ′ = d i a g ( ∣ ∣ e k ′ ∣ ∣ ∣ ∣ e k ∣ ∣ P g k g k ′ ) R(p)p'=diag(\frac{P_{g_k}}{||e_k||})\bar Hp'=diag(\frac{P_{g_k}}{||e_k||})e'=diag(\frac{||e'_k||}{||e_k||}P_{g_k}g'_k) R(p)p=diag(ekPgk)Hˉp=diag(ekPgk)e=diag(ekekPgkgk)
可以明显发现得到的对角阵上的元素就是向量对应元素的投影映射运算再乘上一个模长系数,所以它可以反映出两种结构的相似程度,可以预想到如果 R ( p ) p ′ = 0 R(p)p'=0 R(p)p=0,那正好就是bearing equivalent的定义,这一点在后面也有证明。

δ p \delta p δp是p的变化量,如果 R ( p ) δ p = 0 R(p)\delta p=0 R(p)δp=0,那么这个变化量被称为 infinitesimal bearing motion(无穷小方位变化),如果一个infinitesimal bearing motion表示的是framework的平移(translation)或者放缩(scaling),那么这个变化量也被称为trivial

(Infinitesimal Bearing Rigidity) 如果一个framework的所有infinitesimal bearing motion都是trivial,那么这个framework是infinitesimal bearing rigid的。

2.5 一些引理与证明

接下来会逐步证明一些引理和定理,内容围绕着证明infinitesimal bearing rigidity确定唯一形状,将会逐步梳理出三种bearing rigidity的关系已经性质。目的是帮助更容易地找出可以使用的结构。

引理1:framework G ( p ) \mathcal{G}(p) G(p) in R d \mathbb{R}^d Rd 总是满足 s p a n { 1 ⊗ I d , p } ⫅ N u l l ( R ( p ) ) span\{1\otimes I_d, p\}\subseteqq Null(R(p)) span{ 1Id,p}Null(R(p)) r a n k ( R ( p ) ) ≤ d n − d − 1 rank(R(p))\le dn-d-1 rank(R(p))dnd1
证明:
由于 H ˉ ( 1 ⊗ I d ) = ( H ⊗ I d ) ( 1 ⊗ I d ) = ( H 1 ) ⊗ ( I d ) = 0 \bar H (1\otimes I_d)=(H\otimes I_d)(1\otimes I_d)=(H1)\otimes(I_d)=0 Hˉ(1Id)=(HId)(1Id)=(H1)(Id)=0,且 R ( p ) = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) H ˉ R(p)=diag(\frac{P_{g_k}}{||e_k||})\bar H R(p)=diag(ekPgk)Hˉ,易知 s p a n { 1 ⊗ I d } ⫅ N u l l ( H ˉ ) ⫅ N u l l ( R ( p ) ) span\{1\otimes I_d\}\subseteqq Null(\bar H)\subseteqq Null(R(p)) span{ 1Id}Null(Hˉ)Null(R(p))
再由 R ( p ) p = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) H ˉ p = d i a g ( P g k ∣ ∣ e k ∣ ∣ ) e = 0 R(p)p=diag(\frac{P_{g_k}}{||e_k||})\bar H p =diag(\frac{P_{g_k}}{||e_k||})e=0 R(p)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值