【TensorRT】NVIDIA TensorRT 安装 (Windows C++)

1.TensorRT介绍

 NVIDIA TensorRT™ 是用于高性能深度学习推理的 SDK,可为深度学习推理应用提供低延迟和高吞吐量。

 基于 NVIDIA TensorRT 的应用程序在推理过程中的执行速度比仅使用 CPU 的平台快 36 倍,使开发人员能够优化在所有主要框架上训练的神经网络模型,以高精度校准以降低精度,并部署到超大规模数据中心、嵌入式平台或汽车产品平台。
在这里插入图片描述

 TensorRT 基于 NVIDIA CUDA 并行编程模型构建,使开发人员能够通过利用 CUDA-X 中的库、开发工具和技术来优化推理®™用于 AI、自主机器、高性能计算和图形。借助新的NVIDIA Ampere Architecture GPU,TensorRT还使用稀疏张量内核来进一步提高性能。

 TensorRT 提供 INT8,使用量化感知训练和雨后量化,以及 FP16 优化,用于深度学习推理应用程序的生产部署,如视频流、语音识别、推荐、欺诈检测、文本生成和自然语言处理。降低精确度推断可显著降低应用程序延迟,这是许多实时服务以及自主和嵌入式应用程序的要求。

 借助TensorRT,开发人员可以专注于创建新颖的AI应用程序,而不是推理优化。然后,TensorRT优化的模型可以与NVIDIA Triton一起部署,NVIDIA Triton™是一种开源推理服务软件,包括TensorRT作为其后端之一。
在这里插入图片描述

 官方安装文档为:安装指南 :: NVIDIA Deep Learning TensorRT 文档

2. 查看设备信息

 TensorRT 基于 NVIDIA CUDA 并行编程模型构建,因此当前电脑需要已经安装CUDN以及cuDNN依赖。此处不做详述。
首先查看CUDA 版本,命令提示符输入下面命令:

nvcc --version

在这里插入图片描述
 可以看出本机电脑安装的CUDN版本为11.4。
 接下来查看cuDNN版本,进入 CUDA 的安装目录查看文件 cudnn_version.h :

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\include\cudnn_version.h

在这里插入图片描述
 在此处可以看出,cuDNN版本为8.2.4。

3.下载TensorRT

 根据上一步查看的本机CUDN、以及cuDNN版本,此处选择最新版本为8.0系列版本,下载链接为:NVIDIA TensorRT 8.x Download | NVIDIA Developer;进入页面如下,根据自己安装的CUDA版本与CUDNN版本进行下载。
在这里插入图片描述
 由于cuDNN版本为8.2.4,所以此处我们选者8.2以上版本的TensorRT,这与我们的电脑是适配的。
在这里插入图片描述

 下载完为下述文件,其最大支持cuda-11.6、cudnn8.3,是大于我们电脑所安装版本,将下载好的文件解压缩到本地目录,最好放置在固定目录中,该目录即作为安装目录。
在这里插入图片描述

4 设置环境变量

 将以下路径加入当环境变量中:

D:\Program Files\TensorRT-8.4.0.6\lib

5. vs环境设置

5.1 包含目录

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\include
D:\Program Files\TensorRT-8.4.0.6\include

5.2 库目录

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\lib\x64
D:\Program Files\TensorRT-8.4.0.6\lib

5.3 附加依赖项

nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
cublas.lib
cublasLt.lib
cuda.lib
cudadevrt.lib
cudart.lib
cudart_static.lib
cudnn.lib
cudnn64_8.lib
cudnn_adv_infer.lib
cudnn_adv_infer64_8.lib
cudnn_adv_train.lib
cudnn_adv_train64_8.lib
cudnn_cnn_infer.lib
cudnn_cnn_infer64_8.lib
cudnn_cnn_train.lib
cudnn_cnn_train64_8.lib
cudnn_ops_infer.lib
cudnn_ops_infer64_8.lib
cudnn_ops_train.lib
cudnn_ops_train64_8.lib
cufft.lib
cufftw.lib
curand.lib
cusolver.lib
cusolverMg.lib
cusparse.lib
nppc.lib
nppial.lib
nppicc.lib
nppidei.lib
nppif.lib
nppig.lib
nppim.lib
nppist.lib
nppisu.lib
nppitc.lib
npps.lib
nvblas.lib
nvjpeg.lib
nvml.lib
nvrtc.lib
OpenCL.lib
<think>嗯,用户想查找TensorRT安装方法或者教程,特别是询问安装指南和如何安装。首先,我需要回忆一下之前提供的引用内容。引用[1]提到了Windows10下的安装步骤,包括下载ZIP文件、解压、添加环境变量和验证安装。引用[2]则涉及ONNX-TensorRT安装,需要替换路径和编译项目。引用[3]是通用的安装配置指南,确认安装成功后的使用。 用户的需求很明确,是要安装TensorRT,可能需要详细的步骤指导。我应该先概述安装前的准备,比如检查CUDA版本和下载对应的TensorRT版本。然后分步骤说明Windows和Linux下的安装方法,因为用户可能使用不同的操作系统。Windows部分可以参考引用[1]的内容,详细列出解压、环境变量设置、验证等步骤。Linux部分可能需要使用deb包或者Tar包安装,同样需要环境变量配置,并验证安装是否成功。 另外,用户可能需要知道如何验证安装是否成功,比如运行sample程序或者Python测试。这部分需要确保用户完成安装后能够确认TensorRT正常工作。同时,考虑到用户可能遇到的问题,比如路径替换、环境变量配置错误,或者依赖项缺失,应该在注意事项里提醒他们注意版本匹配和路径正确性。 可能还需要补充一些常见问题,比如安装后无法导入TensorRT模块,这时候需要检查PYTHONPATH是否正确,或者是否有缺失的依赖库。此外,引用[2]提到的ONNX-TensorRT编译可能对部分用户有用,但用户主要问题是安装,可能暂时不需要深入,但可以作为后续步骤提及。 最后,生成的相关问题需要覆盖安装验证、不同系统安装、依赖检查以及与其他框架的集成,这样用户如果有进一步的问题可以自行参考。需要确保回答结构清晰,分步骤说明,并且引用正确的来源,比如引用[1][3]作为主要安装步骤,引用[2]作为扩展内容。</think>以下是TensorRT安装的详细步骤指南: ### TensorRT安装步骤 1. **安装前准备** - 确认已安装对应版本的CUDA和cuDNN(建议使用Nvidia官方推荐的版本组合)[^3] - 下载对应版本的TensorRT压缩包(推荐从[Nvidia开发者网站](https://developer.nvidia.com/tensorrt)获取) 2. **Windows安装** ```markdown 1. 解压下载的TensorRT ZIP文件到指定目录(建议路径不含中文和空格)[^1] 2. 添加以下环境变量: - TensorRT安装目录:`<path_to_tensorrt>` - 将TensorRT的lib目录添加到PATH:`<path_to_tensorrt>\lib` 3. 验证安装: ```python import tensorrt print(tensorrt.__version__) ``` ``` 3. **Linux安装(Debian包方式)** ```bash # 安装基础包 sudo dpkg -i nv-tensorrt-local-repo-<distro>_<version>-1_amd64.deb sudo apt-key add /var/nv-tensorrt-local-repo-<version>/7fa2af80.pub sudo apt-get update sudo apt-get install tensorrt ``` 4. **验证安装** ```bash # 检查样本程序 cd <TensorRT安装目录>/samples/sampleMNIST make ./sample_mnist ``` ### 注意事项 - 必须保证CUDA、cuDNN、TensorRT版本严格对应[^3] - Python接口需要额外安装`python3-libnvinfer`包 - 遇到路径问题时,请检查`LD_LIBRARY_PATH`(Linux)或`PATH`(Windows)是否包含TensorRT库路径[^2]
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒颜皮皮虾྅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值