平台信息
- 操作系统:Ubuntu 20.04.6 LTS
- CPU架构:x86_64
- GPU:Tesla T4 x 2
- 驱动信息:
- NVIDIA-SMI:535.104.05
- Driver Version: 535.104.05
- CUDA Version: 12.2
步骤
预备步骤
安装驱动和CUDA
假设已经成功安装好驱动,如果没有,请参考其他教程进行安装,可参考NVIDIA GPU驱动安装教程。
为了确保CUDA可用,参考NVIDIA GPU驱动安装教程,我们添加环境变量到.bashrc
里
PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}}
LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
在编辑完.bashrc
后,执行
source .bashrc
确保环境变量生效,然后执行
nvcc -V
出现
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Jun__6_02:18:23_PDT_2024
Cuda compilation tools, release 12.5, V12.5.82
Build cuda_12.5.r12.5/compiler.34385749_0
说明CUDA 安装成功
下载 TensorRT 10
从NVIDIA TensorRT 10.x Download 选择适合自己机器的进行下载:
本文以最新版的10.9 GA
为例,右键复制下载链接:
https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.9.0/tars/TensorRT-10.9.0.34.Linux.x86_64-gnu.cuda-12.8.tar.gz
在机器上执行wget 进行下载:
wget https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.9.0/tars/TensorRT-10.9.0.34.Linux.x86_64-gnu.cuda-12.8.tar.gz
安装
解压缩
tar -xvf TensorRT-10.9.0.34.Linux.x86_64-gnu.cuda-12.8.tar.gz
添加环境变量
添加以下变量到.bashrc
上
export LD_LIBRARY_PATH=/home/limingbo/TensorRT-10.9.0.34/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH=/home/limingbo/TensorRT-10.9.0.34/include:$CPLUS_INCLUDE_PATH
export PATH=/home/limingbo/TensorRT-10.9.0.34/bin:$PATH
安装
- 安装下列包
pip install pycuda nvidia-pyindex nvidia-tensorrt tensorrt
验证
通过下列代码验证TensorRT
的安装
import tensorrt as trt
print("TensorRT Version: ", trt.__version__)