LightGBM用法速查表
1.读取csv数据并指定参数建模
# coding: utf-8
import json
import lightgbm as lgb
import pandas as pd
from sklearn.metrics import mean_squared_error
# 加载数据集合
print('Load data...')
df_train = pd.read_csv('regression.train.txt', header=None, sep='\t')
df_test = pd.read_csv('regression.test.txt', header=None, sep='\t')
# 设定训练集和测试集
y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values
# 构建lgb中的Dataset格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# 敲定好一组参数
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': {'l2', 'auc'},
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0
}
print('开始训练...')
# 训练
gbm = lgb.train(params,
lgb_train,
num_boost_round=20,
valid_sets=lgb_eval,
early_stopping_rounds=5)
# 保存模型
print('保存模型...')
# 保存模型到文件中
gbm.save_model('model.txt')
print('开始预测...')
# 预测
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
# 评估
print('预估结果的rmse为:')
print(mean_squared_error(y_test, y_pred) ** 0.5)
#Load data...
#开始训练...
#[1] valid_0's l2: 0.24288 valid_0's auc: 0.764496
#Training until validation scores don't improve for 5 rounds.
#[2] valid_0's l2: 0.239307 valid_0's auc: 0.766173
#[3] valid_0's l2: 0.235559 valid_0's auc: 0.785547
#[4] valid_0's l2: 0.230771 valid_0's auc: 0.797786
#[5] valid_0's l2: 0.226297 valid_0's auc: 0.805155
#[6] valid_0's l2: 0.223692 valid_0's auc: 0.800979
#[7] valid_0's l2: 0.220941 valid_0's auc: 0.806566
#[8] valid_0's l2: 0.217982 valid_0's auc: 0.808566
#[9] valid_0's l2: 0.215351 valid_0's auc: 0.809041
#[10] valid_0's l2: 0.213064 valid_0's auc: 0.805953
#[11] valid_0's l2: 0.211053 valid_0's auc: 0.804631
#[12] valid_0's l2: 0.209336 valid_0's auc: 0.802922
#[13] valid_0's l2: 0.207492 valid_0's auc: 0.802011
#[14] valid_0's l2: 0.206016 valid_0's auc: 0.80193
#Early stopping, best iteration is:
#[9] valid_0's l2: 0.215351 valid_0's auc: 0.809041
#保存模型...
#开始预测...
#预估结果的rmse为:
#0.4640593794679212
2.添加样本权重训练
# coding: utf-8
import json
import lightgbm as lgb
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
import warnings
warnings.filterwarnings("ignore")
# 加载数据集
print('加载数据...')
df_train = pd.read_csv('binary.train', header=None, sep='\t')
df_test = pd.read_csv('./data/binary.test', header=None, sep='\t')
W_train = pd.read_csv('binary.train.weight', header=None)[0]
W_test = pd.read_csv('binary.test.weight', header=None)[0]
y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values
num_train, num_feature = X_train.shape
# 加载数据的同时加载权重
lgb_train = lgb.Dataset(X_train, y_train,
weight=W_train, free_raw_data=False)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train,
weight=W_test, free_raw_data=False)
# 设定参数
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0
}
# 产出特征名称
feature_name = ['feature_' + str(col) for col in range(num_feature)]
print('开始训练...')
gbm = lgb.train(params,
lgb_train,
num_boost_round=10,
valid_sets=lgb_train, # 评估训练集
feature_name=feature_name,
categorical_feature=[21])
#加载数据...
#开始训练...
#[1] valid_0's binary_logloss: 0.681265
#[2] valid_0's binary_logloss: 0.673318
#[3] valid_0's binary_logloss: 0.664193
#[4] valid_0's binary_logloss: 0.655501
#[5] valid_0's binary_logloss: 0.650956
#[6] valid_0's binary_logloss: 0.644803
#[7] valid_0's binary_logloss: 0.637567
#[8] valid_0's binary_logloss: 0.631224
#[9] valid_0's binary_logloss: 0.624958
#[10] valid_0's binary_logloss: 0.619398
3.模型的载入与预测
# 查看特征名称
print('完成10轮训练...')
print('第7个特征为:')
print(repr(lgb_train.feature_name[6]))
# 存储模型
gbm.save_model('./model/lgb_model.txt')
# 特征名称
print('特征名称:')
print(gbm.feature_name())
# 特征重要度
print('特征重要度:')
print(list(gbm.feature_importance()))
# 加载模型
print('加载模型用于预测')
bst = lgb.Booster(model_file='./model/lgb_model.txt')
# 预测
y_pred = bst.predict(X_test)
# 在测试集评估效果
print('在测试集上的rmse为:')
print(mean_squared_error(y_test, y_pred) ** 0.5)
# 查看特征名称
print('完成10轮训练...')
print('第7个特征为:')
print(repr(lgb_train.feature_name[6]))
# 存储模型
gbm.save_model('./model/lgb_model.txt')
# 特征名称
print('特征名称:')
print(gbm.feature_name())
# 特征重要度
print('特征重要度:')
print(list(gbm.feature_importance()))
# 加载模型
print('加载模型用于预测')
bst = lgb.Booster(model_file='./model/lgb_model.txt')
# 预测
y_pred = bst.predict(X_test)
# 在测试集评估效果
print('在测试集上的rmse为:')
print(mean_squared_error(y_test, y_pred) ** 0.5)
# 查看特征名称
print('完成10轮训练...')
print('第7个特征为:')
print(repr(lgb_train.feature_name[6]))
# 存储模型
gbm.save_model('./model/lgb_model.txt')
# 特征名称
print('特征名称:')
print(gbm.feature_name())
# 特征重要度
print('特征重要度:')
print(list(gbm.feature_importance()))
# 加载模型
print('加载模型用于预测')
bst = lgb.Booster(model_file='./model/lgb_model.txt')
# 预测
y_pred = bst.predict(X_test)
# 在测试集评估效果
print('在测试集上的rmse为:')
print(mean_squared_error(y_test, y_pred) ** 0.5)
#完成10轮训练...
#第7个特征为:
#'feature_6'
#特征名称:
#[u'feature_0', u'feature_1', u'feature_2', u'feature_3', u'feature_4', u'feature_5', u'feature_6', u'feature_7', u'feature_8', u'feature_9', u'feature_10', u'feature_11', u'feature_12', u'feature_13', u'feature_14', u'feature_15', u'feature_16', u'feature_17', u'feature_18', u'feature_19', u'feature_20', u'feature_21', u'feature_22', u'feature_23', u'feature_24', u'feature_25', u'feature_26', u'feature_27']
#特征重要度:
#[8, 5, 1, 19, 7, 33, 2, 0, 2, 10, 5, 2, 0, 9, 3, 3, 0, 2, 2, 5, 1, 0, 36, 3, 33, 45, 29, 35]
#加载模型用于预测
#在测试集上的rmse为:
#0.4629245607636925
4.接着之前的模型继续训练
# 继续训练
# 从./model/model.txt中加载模型初始化
gbm = lgb.train(params,
lgb_train,
num_boost_round=10,
init_model='./model/lgb_model.txt',
valid_sets=lgb_eval)
print('以旧模型为初始化,完成第 10-20 轮训练...')
# 在训练的过程中调整超参数
# 比如这里调整的是学习率
gbm = lgb.train(params,
lgb_train,
num_boost_round=10,
init_model=gbm,
learning_rates=lambda iter: 0.05 * (0.99 ** iter),
valid_sets=lgb_eval)
print('逐步调整学习率完成第 20-30 轮训练...')
# 调整其他超参数
gbm = lgb.train(params,
lgb_train,
num_boost_round=10,
init_model=gbm,
valid_sets=lgb_eval,
callbacks=[lgb.reset_parameter(bagging_fraction=[0.7] * 5 + [0.6] * 5)])
#print('逐步调整bagging比率完成第 30-40 轮训练...')
#[11] valid_0's binary_logloss: 0.616177
#[12] valid_0's binary_logloss: 0.611792
#[13] valid_0's binary_logloss: 0.607043
#[14] valid_0's binary_logloss: 0.602314
#[15] valid_0's binary_logloss: 0.598433
#[16] valid_0's binary_logloss: 0.595238
#[17] valid_0's binary_logloss: 0.592047
#[18] valid_0's binary_logloss: 0.588673
#[19] valid_0's binary_logloss: 0.586084
#[20] valid_0's binary_logloss: 0.584033
#以旧模型为初始化,完成第 10-20 轮训练...
#[21] valid_0's binary_logloss: 0.616177
#[22] valid_0's binary_logloss: 0.611834
#[23] valid_0's binary_logloss: 0.607177
#[24] valid_0's binary_logloss: 0.602577
#[25] valid_0's binary_logloss: 0.59831
#[26] valid_0's binary_logloss: 0.595259
#[27] valid_0's binary_logloss: 0.592201
#[28] valid_0's binary_logloss: 0.589017
#[29] valid_0's binary_logloss: 0.586597
#[30] valid_0's binary_logloss: 0.584454
#逐步调整学习率完成第 20-30 轮训练...
#[31] valid_0's binary_logloss: 0.616053
#[32] valid_0's binary_logloss: 0.612291
#[33] valid_0's binary_logloss: 0.60856
#[34] valid_0's binary_logloss: 0.605387
#[35] valid_0's binary_logloss: 0.601744
#[36] valid_0's binary_logloss: 0.598556
#[37] valid_0's binary_logloss: 0.595585
#[38] valid_0's binary_logloss: 0.593228
#[39] valid_0's binary_logloss: 0.59018
#[40] valid_0's binary_logloss: 0.588391
#逐步调整bagging比率完成第 30-40 轮训练...
5.自定义损失函数
# 类似在xgboost中的形式
# 自定义损失函数需要
def loglikelood(preds, train_data):
labels = train_data.get_label()
preds = 1. / (1. + np.exp(-preds))
grad = preds - labels
hess = preds * (1. - preds)
return grad, hess
# 自定义评估函数
def binary_error(preds, train_data):
labels = train_data.get_label()
return 'error', np.mean(labels != (preds > 0.5)), False
gbm = lgb.train(params,
lgb_train,
num_boost_round=10,
init_model=gbm,
fobj=loglikelood,
feval=binary_error,
valid_sets=lgb_eval)
print('用自定义的损失函数与评估标准完成第40-50轮...')
#[41] valid_0's binary_logloss: 0.614429 valid_0's error: 0.268
#[42] valid_0's binary_logloss: 0.610689 valid_0's error: 0.26
#[43] valid_0's binary_logloss: 0.606267 valid_0's error: 0.264
#[44] valid_0's binary_logloss: 0.601949 valid_0's error: 0.258
#[45] valid_0's binary_logloss: 0.597271 valid_0's error: 0.266
#[46] valid_0's binary_logloss: 0.593971 valid_0's error: 0.276
#[47] valid_0's binary_logloss: 0.591427 valid_0's error: 0.278
#[48] valid_0's binary_logloss: 0.588301 valid_0's error: 0.284
#[49] valid_0's binary_logloss: 0.586562 valid_0's error: 0.288
#[50] valid_0's binary_logloss: 0.584056 valid_0's error: 0.288
#用自定义的损失函数与评估标准完成第40-50轮...
sklearn与LightGBM配合使用
1.LightGBM建模,sklearn评估
# coding: utf-8
import lightgbm as lgb
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
# 加载数据
print('加载数据...')
df_train = pd.read_csv('regression.train.txt', header=None, sep='\t')
df_test = pd.read_csv('.regression.test.txt', header=None, sep='\t')
# 取出特征和标签
y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values
print('开始训练...')
# 直接初始化LGBMRegressor
# 这个LightGBM的Regressor和sklearn中其他Regressor基本是一致的
gbm = lgb.LGBMRegressor(objective='regression',
num_leaves=31,
learning_rate=0.05,
n_estimators=20)
# 使用fit函数拟合
gbm.fit(X_train, y_train,
eval_set=[(X_test, y_test)],
eval_metric='l1',
early_stopping_rounds=5)
# 预测
print('开始预测...')
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
# 评估预测结果
print('预测结果的rmse是:')
print(mean_squared_error(y_test, y_pred) ** 0.5)
#加载数据...
#开始训练...
#[1] valid_0's l1: 0.491735
#Training until validation scores don't improve for 5 rounds.
#[2] valid_0's l1: 0.486563
#[3] valid_0's l1: 0.481489
#[4] valid_0's l1: 0.476848
#[5] valid_0's l1: 0.47305
#[6] valid_0's l1: 0.469049
#[7] valid_0's l1: 0.465556
#[8] valid_0's l1: 0.462208
#[9] valid_0's l1: 0.458676
#[10] valid_0's l1: 0.454998
#[11] valid_0's l1: 0.452047
#[12] valid_0's l1: 0.449158
#[13] valid_0's l1: 0.44608
#[14] valid_0's l1: 0.443554
#[15] valid_0's l1: 0.440643
#[16] valid_0's l1: 0.437687
#[17] valid_0's l1: 0.435454
#[18] valid_0's l1: 0.433288
#[19] valid_0's l1: 0.431297
#[20] valid_0's l1: 0.428946
#Did not meet early stopping. Best iteration is:
#[20] valid_0's l1: 0.428946
#开始预测...
#预测结果的rmse是:
#0.4441153344254208
2.网格搜索查找最优超参数
# 配合scikit-learn的网格搜索交叉验证选择最优超参数
estimator = lgb.LGBMRegressor(num_leaves=31)
param_grid = {
'learning_rate': [0.01, 0.1, 1],
'n_estimators': [20, 40]
}
gbm = GridSearchCV(estimator, param_grid)
gbm.fit(X_train, y_train)
print('用网格搜索找到的最优超参数为:')
print(gbm.best_params_)
#用网格搜索找到的最优超参数为:
#{'n_estimators': 40, 'learning_rate': 0.1}
3.绘图解释
# coding: utf-8
import lightgbm as lgb
import pandas as pd
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError('You need to install matplotlib for plotting.')
# 加载数据集
print('加载数据...')
df_train = pd.read_csv('./data/regression.train.txt', header=None, sep='\t')
df_test = pd.read_csv('./data/regression.test.txt', header=None, sep='\t')
# 取出特征和标签
y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values
# 构建lgb中的Dataset数据格式
lgb_train = lgb.Dataset(X_train, y_train)
lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train)
# 设定参数
params = {
'num_leaves': 5,
'metric': ('l1', 'l2'),
'verbose': 0
}
evals_result = {} # to record eval results for plotting
print('开始训练...')
# 训练
gbm = lgb.train(params,
lgb_train,
num_boost_round=100,
valid_sets=[lgb_train, lgb_test],
feature_name=['f' + str(i + 1) for i in range(28)],
categorical_feature=[21],
evals_result=evals_result,
verbose_eval=10)
print('在训练过程中绘图...')
ax = lgb.plot_metric(evals_result, metric='l1')
plt.show()
print('画出特征重要度...')
ax = lgb.plot_importance(gbm, max_num_features=10)
plt.show()
print('画出第84颗树...')
ax = lgb.plot_tree(gbm, tree_index=83, figsize=(20, 8), show_info=['split_gain'])
plt.show()
#print('用graphviz画出第84颗树...')
#graph = lgb.create_tree_digraph(gbm, tree_index=83, name='Tree84')
#graph.render(view=True)
#加载数据...
#开始训练...
#[10] training's l2: 0.217995 training's l1: 0.457448 valid_1's l2: 0.21641 valid_1's l1: 0.456464
#[20] training's l2: 0.205099 training's l1: 0.436869 valid_1's l2: 0.201616 valid_1's l1: 0.434057
#[30] training's l2: 0.197421 training's l1: 0.421302 valid_1's l2: 0.192514 valid_1's l1: 0.417019
#[40] training's l2: 0.192856 training's l1: 0.411107 valid_1's l2: 0.187258 valid_1's l1: 0.406303
#[50] training's l2: 0.189593 training's l1: 0.403695 valid_1's l2: 0.183688 valid_1's l1: 0.398997
#[60] training's l2: 0.187043 training's l1: 0.398704 valid_1's l2: 0.181009 valid_1's l1: 0.393977
#[70] training's l2: 0.184982 training's l1: 0.394876 valid_1's l2: 0.178803 valid_1's l1: 0.389805
#[80] training's l2: 0.1828 training's l1: 0.391147 valid_1's l2: 0.176799 valid_1's l1: 0.386476
#[90] training's l2: 0.180817 training's l1: 0.388101 valid_1's l2: 0.175775 valid_1's l1: 0.384404
#[100] training's l2: 0.179171 training's l1: 0.385174 valid_1's l2: 0.175321 valid_1's l1: 0.382929
#在训练过程中绘图...
画出特征重要度…
画出第84颗树…