口诀:平时没好好学,算到最后,发现这啥jb算法题,调试半天,还是cv吧
平方和>算数>几何>调和
a 2 + b 2 2 ≥ a + b 2 ≥ a b ≥ 2 a b a + b \sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2} \geq \sqrt{ab} \geq \frac{2ab}{a+b} 2a2+b2≥2a+b≥ab≥a+b2ab
-
平方和(平方平均数或均方根):这个名字来源于计算过程中使用了平方的和。具体来说,你首先计算每个数的平方,然后求这些平方的平均值,最后取这个平均值的平方根。因此称为“平方和”。
-
算术平均数:这是最常见的平均数类型,通常我们所说的“平均数”就是指这个。它通过将所有数值加起来然后除以数值的个数来计算,因此被称为“算术”平均数,反映了其计算方法是基于基本的算术操作:加法和除法。
-
几何平均数:几何平均数是通过将所有数值相乘,然后取这个乘积的 n 次根(n 是数值的数量)来计算的。这个方法在乘法和开根方面具有“几何”特性,因此被称为“几何”平均数。几何平均数在处理比率和增长率等问题时特别有用。
-
调和平均数:这个名字的来源有点特别。在古希腊,调和平均数与音乐和比例的概念相关。它是通过取数值的倒数的算术平均数,然后再取这个平均数的倒数来计算的。这种计算方式在处理速率和比例问题时特别有用,因为它更好地反映了某些类型的比率关系。在某些情况下,调和平均数可以被视为一种“平衡”或“调和”的值,反映了其名称的由来。
调和平均数的计算过程如下:
-
首先,计算每个数值的倒数。
-
然后,计算这些倒数的算术平均数。
-
最后,取这个平均数的倒数,得到调和平均数。
这种计算方式在处理速率和比例问题时特别有效,因为它更好地反映了涉及倒数或反比关系的数据的平均特性。例如,当计算平均速度或电阻率时,调和平均数提供了一种更加合适的平均方法,相比于算术平均数或几何平均数。
以上都是废话
证明方法
这玩意还要证明吗,不都是(a+b)2>=0和(a-b)2>=0
变换过来的吗,重要的是怎么背,以及做题的时候直接想到用
技巧:刷多了就会了
最多有办法死记硬背,但最后要练成肌肉记忆
记忆方法:每个算式最后都是等价于一阶c
1、先记住第二个是算数,一阶,两数相加a+b,除以二才是c
a
+
b
2
\frac{a+b}{2}
2a+b
2、左边是平方和,听起来很高级,其实就是两个数的平方加到一起,要凑到c,
那就得先除2变成c^2
,然后开平方,就是c
a
2
+
b
2
2
\sqrt{\frac{a^2+b^2}{2}}
2a2+b2
3、算数右边的就是老朋友几何,ab是c^2开平方就是c
a
b
\sqrt{ab}
ab
4、调和,名字很抽象,排在最后一个
先倒数之和
1
a
+
1
b
=
a
+
b
a
∗
b
\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a*b}
a1+b1=a∗ba+b
,再除2
a
+
b
2
a
b
\frac{a+b}{2ab}
2aba+b
,然后再倒回来
2
a
b
a
+
b
\frac{2ab}{a+b}
a+b2ab
最后也是上2c^2除以
下2*c
等于c
总结:
1、平方和,顾名思义,两个数的平方之和
2、算数:最简单的运算,加法
3、几何:面积的计算,乘法
4、调和:扯不下去了,死记吧。。。
口诀:平时没好好学,算到最后,发现这啥jb算法题,调试半天,还是cv吧