2-7、规划问题的Lingo解法

一、 从规划问题引入

  在我们学习探索的各个领域,规划问题都是无处不在的。通过列出约束条件及目标函数,再画出约束条件所表示的可行域,就能在可行域内求得目标函数的最优解以及最优值。当然我们在高中就已经学习过线性规划的相关知识,对于理科同学来说,大多数同学应该感觉难度不大,或者说是送分考点。然而到了大学阶段,一些规划问题的求解已经不是人力可以轻松算出来的了,必须借助于计算机来进行计算。那么对于规划问题的软件选择,又应当如何进行呢?

二、 软件分析与选择

  Matlab相比之下是一个面面俱到的编程软件,也可用于求解规划问题。但是如果一定要去和某些“针对特定功能而开发的软件”去比的话,Matlab有时也会稍显逊色。就好比一款顶级的耳机能通吃高中低音,但是去和另一款顶级的为高音而设计的耳机去比较的话,也难免会被比下去。这也就是为什么在规划问题上,很多人会去使用Lingo进行求解。

  首先我们来区分一下Lindo和Lingo这两款软件。Lingo是在Lindo基础之上做成的软件,处理解线性规划问题之外还加了非线性的求解器,更关键的是还追加了集的概念。可以更方便的解决复杂的问题。所以本文只对Lingo进行讲解。
  而对于Matlab与Lingo的区别,就好比手动挡与自动挡的区别,有针对性的专业软件会对用户做很多的优化。这里引用知乎上大佬 花开花落 的回答
https://www.zhihu.com/question/49319704/answer/165923451

  用MATLAB求解线性规划和整数规划问题,需要先将问题转化成如下标准型,其中X只能是向量,也就是单下标变量,然后用向量和矩阵来表达目标函数和约束条件。
  然而,许多问题(如指派问题和运输问题)由于参数和决策变量是双下标变量,必须在基本的数学模型的基础上进行变换才能求解,这样得到的等式约束和不等式约束的系数矩阵规模就非常庞大,当然由MATLAB计算问题不大,但转换工作完全要由人工完成,工作量大而且容易出错,因此在这一块效率不高。
  而LINGO有自己的建模语言,在建立了集合的基础上,能够高效表达目标函数和各种约束条件。所写的模型基本上可以看作是对数学模型的翻译,不需要太多的转换。

  那么现在我们基本上对LINGO和MATLAB对规划问题的处理方面有了初步认识与了解,至于是执着于MATLAB还是选择开辟LINGO这片新的领域,取决于队伍自身了。

三、 如何上手Lingo

  有很多人对于Lingo的评价都是,非常简单的软件,很好上手。
  “简单”一词我觉得还比较恰当。Lingo的各种版本几乎全部都是免安装版本的,界面很简单,功能用法很简单,处理问题的方式简单快捷。确实是跟“简单”一词挂钩的。但是任何一款软件想要精通,都是有一定难度的。如果你只需要用Lingo处理一些简单的线性问题,那么2个小时不到,0编程基础的朋友就能上手。如果你认准了Lingo就是你处理各类规划问题的御用软件,那么还是有很长一段路要走的。当然这也取决于用户的编程基础。如果学习过面向对象的程序设计课程的朋友,对于类与对象概念有所了解,那么对于集这一概念也能快速理解上手,学习起来更加轻松。

四、 Lingo的基本语法规则

1、求目标函数的最大最小值用 MAX= M A X = MIN= M I N = 来表示;
2、每个语句必须用分号“;”结束,每行可以有许多语句,一个语句可以跨行;
3、变量名必须以字母A-Z开头,由字母、数字0-9和下划线组成,长度不超过32个字符,不区分大小写;
4、可以给语句加上标号;
5、注释以“!”开头以“;”结束;
6、默认所有的决策变量为非负数;
7、Lingo模型以“MODEL”开头以“END”结束。
8、Lingo把相联系的对象聚合成集,借助集,就能够用一个单一的长的简明的公式表示一系列相应的约束。
9、Lingo程序会包含集合段,数据输入段,优化目标和约束段,初始段和数据预处理部分。
10、Lingo函数包括有数学函数,金融函数,概率函数,变量界定义函数,集操作函数,集循环函数,输入输出函数,辅助函数等等。

五、 谈一谈例子

  那么Lingo用起来到底有多简单呢,我们来看一个例子。

例1:某家公诉制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示:

每个书桌每个餐桌每个椅子现有资源总数
木料8个单位6个单位1个单位48个单位
漆工4个单位2个单位1.5个单位20个单位
木工2个单位1.5个单位0.5个单位8个单位
成品单价60个单位30个单位20个单位

  若要求桌子的生产量不超过5件,如何安排三种产品的生产可使利润最大?

解:代码

max = 60 * desks + 30 * tables + 20 * chairs;
      8 * desks + 6 * tables + chairs <= 48;
      4 * desks + 2 * tables + 1.5 * chairs <= 20;
      2 * desks + 1.5 * tables + .5 * chairs <= 8;
tables <= 5;

可以得到结果:

这里写图片描述

  这里的 Total solver iteration 表示一共迭代2次得到最优解。
  Objective value 表示最优值为280,而取280的时候各个变量取多少呢,底下的表格给出了答案。
  可以看到,没有定义变量,简简单单一个函数一个约束条件,迅速计算出了答案。Lingo看上去就像是为了非编程人员量身定制的一样。

例2:给定一个直角三角形,求包含该三角形的最小正方形。

我们可以作出如下正方形:

这里写图片描述

   CE=asinx,AD=bcosx,DE=acosx+bsinx C E = a s i n x , A D = b c o s x , D E = a c o s x + b s i n x

  转化为了规划问题那么正方形面积最小的时候即为最优解。
  代码:

model:
sets:
    object/1..3/:f;
endsets
data:
    a, b = 3, 4;
enddata
    f(1) = a * @sin(x);
    f(2) = b * @cos(x);
    f(3) = a * @cos(x) + b * @sin(x);
    min = @smax(f(1), f(2), f(3));
    @bnd(0, x, 1.57);
end

  得到结果:

这里写图片描述

  这里需要注意,lingo中如果没有代码说明,是默认 x x 的值大于0的。代码中用 bnd 函数限制了 x x 的范围。

  那么再进阶一下,Lingo在处理TSP问题的时候表现如何呢?

例3: 现需在一台机器上加工 n 个零件(如烧瓷器),这些零件可按任意先后顺序在机器上加工。我们希望加工完成所有零件的总时间尽可能少。由于加工工艺的要求,加工零件 j j 时机器必须处于相应状态 sj(如炉温)。设起始未加工任何零件时机器处于状态 s0 s 0 ,且当所有零件加工完成后需恢复到 s0 s 0 状态。已知从状态 si s i 调整到状态 sj(ji) s j ( j ≠ i ) 需要时间 cij c i j 零件 j j 本身加工时间为 pj。为方便起见,引入一个虚零件 0 0 ,其加工时间为 0,要求状态为 s0 s 0 ,则 0,1,2,,n 0 , 1 , 2 , … , n 的一个圈置换 π π 就表示对所有零件的一个加工顺序,在此置换下,完成所有加工所需要的总时间为

i=0n(ciπ(i)+piπ(i))=i=0nciπ(i)+j=0npj

由于 nj=0pj ∑ j = 0 n p j 是一个常数,故该零件的加工顺序问题变成TSP。

代码:

!旅行商问题;
model:
sets:
    city / 1.. 5/: u;
    link(city, city):
        dist, x; !距离矩阵;
endsets
    n = @size(city);
data: !距离矩阵,它并不需要是对称的;
    dist = @qrand(1); !随机产生,这里可改为你要解决的问题的数据;
enddata
    min = @sum(link:dist * x);
    @FOR(city(K):
        @sum(city(I)|I #ne# K: x(I, K)) = 1;
        !进入城市K;
        @sum(city(J)|J #ne# K: x(K, J)) = 1;
    );
    @for(city(I)|I #gt# 1:
        @for(city( J)| J#gt#1 #and# I #ne# J:
             u(I) - u(J) + n * x(I,J) <= n - 1);
    );
@for(city(I)|I #gt# 1: u(I) <= n - 2);
@for(link: @bin(x));
end

可以得到结果:

这里写图片描述

整数规划问题解在约束条件下,所有变量均为整数的优化问题。以下是一个例子: 假设有一家公司要生产产品A和产品B,用到3种原材料X、Y、Z,每种原材料的数量和成本如下表所示: | 原材料 | 产品A | 产品B | | ------ | ------ | ------ | | X | 2 | 1 | | Y | 1 | 3 | | Z | 4 | 2 | | 成本 | 7 | 6 | 另外,公司需要满足以下约束条件: 1. 原材料X的数量不得少于20,原材料Y的数量不得少于10,原材料Z的数量不得少于30。 2. 公司需要生产至少10个产品A和20个产品B。 3. 公司需要遵守以下生产比例:产品A和产品B的比例不得超过 1:2。 现在要公司如何在满足以上约束条件的前提下,以最小的成本生产所需的产品。 MATLAB解法: ```matlab % 原材料成本 C = [7 6]; % 原材料数量限制 A = [-2 -1; -1 -3; -4 -2]; b = [-20; -10; -30]; % 生产数量限制 Aeq = [2 1; 0 1; -1 2]; beq = [10; 20; 0]; % 整数规划 intcon = [1 2]; [x, fval] = intlinprog(C, intcon, A, b, Aeq, beq, zeros(2,1)) % 输出结果 disp('生产产品A的数量为:'); disp(x(1)); disp('生产产品B的数量为:'); disp(x(2)); disp('最小成本为:'); disp(fval); ``` LINGO解法: ``` SET_PRODUCTS = 2; SET_MATERIALS = 3; PARAMETERS C(SET_PRODUCTS) ! 原材料成本 A(SET_MATERIALS, SET_PRODUCTS) ! 原材料使用数量 b(SET_MATERIALS) ! 原材料数量限制 Aeq(SET_PRODUCTS, SET_PRODUCTS) ! 生产数量限制 beq(SET_PRODUCTS) ! 生产数量限制 END C = 7 6 A = 2 1 1 3 4 2 b = 20 10 30 Aeq = 2 1 0 1 beq = 10 20 VARIABLES x(SET_PRODUCTS) INTEGER ! 生产数量 END ! 目标函数为生产成本 MIN = C * x ! 原材料使用量限制 A * x >= b ! 生产数量限制 Aeq * x = beq ! 生产比例限制 x(1) <= 2 * x(2) ! 解 INTEGER :: x SOLVE ! 输出结果 DISPLAY x("生产产品A的数量为") x("生产产品B的数量为") MIN ``` 以上是MATLAB和LINGO解整数规划问题的例子,两种语言都可以有效地解决这类问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值