机器人被誉为“制造业皇冠顶端的明珠”,是衡量一个国家创新能力和产业竞争力的重要标志,已经成为全球新一轮科技和产业革命的重要切入点。随着工业4.0和智能制造业的智能化和柔性化发展,机器人在智能化发展过程中也面临较大的挑战。一方面,产品生产方式呈现多样化、小批量和定制化特征,需要更短的制造系统迭代周期,迫使机器人具备快速编程与对不同场景的高效适应能力。另一方面,机器人正逐渐从工业环境的独立操作转化为与人类进行人机协作,这就要求机器人具备类人的灵巧操作能力。
现有依赖于人为干预与反复调试的机器人编程方式只适用于特定任务,当遇到相近任务或不同环境时,需要重新进行编程,从而无法汲取过往的操作经验,存在效率低、适应性差、灵巧性不足等问题。当前,新一代人工智能技术研发取得了重大进步,产品应用也日益广泛,随着机器人应用广度与深度的不断提升,探索如何利用人工智能技术让机器人系统具备一定的自主决策和学习能力,进而使机器人能够学习到适应于不同任务和环境的操作技能,避免对每个任务的繁琐编程,是未来机器人研究和发展的重要趋势。
随着人工智能与互联网、大数据、云平台等深度融合,在跨媒体感知、自主协同控制和优化决策、机器学习、类脑智能计算等技术的支撑下,机器人的智能化与自主化水平将进一步提升,未来的机器人将具有更多的感知与决策认知能力,变得更加灵活、灵巧与通用,能够高效适用于复杂多变的应用场景。
如今,人们提出了借助人工智能技术让机器人进行自主决策与学习的方法,从而使机器人适应于灵活多样化的应用需求。其中,机器人操作技能学习被认为是最为有