我所觉得的当前卷积神经网络可优化的地方

我所觉得的当前卷积神经网络可优化的地方
     1.卷积核的随机初始化:卷积神经网络比不可少的就是卷积层了(严格来说并不是卷积,而是互相关运算),当前大多数卷积层会用相同形状的多个卷积核(可以理解为信号处理中的滤波器)对输入进行互相关运算。为了使得每个卷积核能够抽取输入的不同特征,一般会对卷积核做随机初始化,使得在后续的反向传播中,能够学习到不同的参数。但是,这种随机初始化的方法并不能保证卷积核能够最终学习到不同的特征。从卷积层中打印出来的卷积结果也可以发现,不同卷积核抽取出来的特征差别并不是很大。因此,我觉得有必要对卷积核的初始化做一定的研究和特定的设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值