接上篇《初等数学复习之方程和方程组》,二倍角公式,听着耳熟,但已经忘干净了。
基本初等函数:常值函数、指数函数、三角函数、幂函数、反函数、对数函数 (记忆为 常 指三 幂反对)
常值函数,这个就不说了,基本上就是平行于x轴或y轴的直线。
指数函数:底数是常量,指数是变量
形如
底数
性质:都通过(0,1)这一点,并且所有指数函数值都是大于0的。
当时,函数
单调增加;
当时,函数
单调减少;
不用记,只要脑补一下,类似的图形就可以了
特殊的指数写法:
;
;
指数的运算法则:
三角函数:
正弦函数:
性质:
1.正弦函数的有界性,绝对值小于等于1
2.正弦函数具有周期性,最小正周期为2π
3.正弦函数关于原点对称,是奇函数(关于原点对称)
余弦函数;
性质:前两个与正弦函数一样
3.余弦函数关于y轴对称,是偶函数(关于y轴对称)
正弦与余弦定义域都是全体实数。
正切函数:tanθ=sinθ/cosθ
1.正切函数是无界的(如π/2左边是趋于正无穷,在右边是趋于负无穷)
2.正切函数具有周期性,最小正周期为π
3.正切函数是奇函数
这里要明白,不等于的含义,这些不等于的点都是取不到的,举个例子。可以从图形上看到,tanx只是无限接近于π/2,所以这个点是取不到的。
余切函数:
性质:与正切一样。它的定义域是除kπ以外的点。
三角函数的恒等式(三角公式)与积分公式一样,多看看
同角三角函数基本关系式
(1)倒数关系:
(2)商的关系
切化弦公式
(3)平方关系
(三角恒等式)
两角和的正弦和余弦公式
两角差的正弦和余弦公式
倍角公式
降幂公式,很重要。
积化和差公式
注:与和差化积对应,一般记一种就可以,如何推导的呢????看下面的口决中后面的部分就可以了,如:a=(a+b)/2+(a-b)/2 b=(a+b)/2-(a-b)/2,个人觉得记下面的好算,有用。
特殊角的三角函数值:
幂函数:底数是变量,指数是常量
形如的函数为幂函数。
性质:
为正整数时,幂函数的定义域是
为负整数时,幂函数的定义域是:除0以外的所有实数
对任意实数,曲线
都通过平面上的点(1,1)
从图形到性质:重点:
遇到应该分步进行,不能想当然的写成是
.
第一步:先求根号x的分式表示,
第二步,再将其看作整体,求的分式表示,
.
反三角函数:
arcsinx含义:给定一个正弦值就是反求角度。这个角范围是[-π/2 ,π/2]。sin(arcsinx)=x;//最后这一点的理解,x是代表一个正弦值。x∈[-1,1]。
arccosx含义:给定一个余弦值就是反求角度。这个角范围是[0 ,π]。cos(arccosx)=x;//x∈[-1,1]。
arctanx:其他同理,角范围是[-π/2 ,π/2]。正切值范围x∈R
arccotx: 其他同理,角范围是[0 ,π],余切值范围x∈R
对数函数:指数函数的反函数。
表示 a的多少次方=x,实际就是求多少次方。对数函数的定义域是(0,+∞),都通过(1,0)点。
y=lgx:表示的是以10为底的对数
y=lnx:表示的是以e为底的对数。
对数函数有下列性质:设a,b,c,x,y为任意正数,(a≠1,c≠1),α为任意实数,
(1);(c≠1)换底公式
(2);
(3);
(4)
(5)
幂指函数:底数与指数都是变量
形如
化简:lny=ln=g(x) lnf(x)
y=e^(g(x)lnf(x);//主要掌握这种变形的方法