GAT入门

1、GAT的优点

        区别于GNN采用拉普拉斯矩阵的特征基向量作为卷积内核,GAT是一种根据空间结构进行卷积的算法。GAT会在动态图的表现优于GAT,因为拉普拉斯矩阵的计算相对复杂。

2、GAT代码

        分成:Transductive learning(直推式学习)和Inductive learing(归纳式学习)

        代码一共是两层:

        具体指标则是分类准确率;

        cora大概在80%左右;test loss:1.8    

        citeseer大概是73%;test loss:1.61

3、数据形式:

4、

cite:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值