1、GAT的优点
区别于GNN采用拉普拉斯矩阵的特征基向量作为卷积内核,GAT是一种根据空间结构进行卷积的算法。GAT会在动态图的表现优于GAT,因为拉普拉斯矩阵的计算相对复杂。
2、GAT代码
分成:Transductive learning(直推式学习)和Inductive learing(归纳式学习)
代码一共是两层:
具体指标则是分类准确率;
cora大概在80%左右;test loss:1.8
citeseer大概是73%;test loss:1.61
3、数据形式:
4、
cite: