一提到角点检测,最常用的方法莫过于Harris角点检测,opencv中也提供了Harris角点检测的接口,即cv::cornerHarris(),但是Harris角点检测存在很多缺陷(如角点是像素级别的,速度较慢等),因此我们这里将介绍opencv中的另一个功能更为强大的函数——cv::goodFeaturesToTrack(),它不仅支持Harris角点检测,也支持Shi Tomasi算法的角点检测。但是,该函数检测到的角点依然是像素级别的,若想获取更为精细的角点坐标,则需要调用cv::cornerSubPix()函数进一步细化处理,即亚像素。
1、cv::goodFeaturesToTrack()角点检测
cv::goodFeaturesToTrack()的具体调用形式如下:
void cv::goodFeaturesToTrack(
cv::InputArray image, // 输入图像(CV_8UC1 CV_32FC1)
cv::OutputArray corners, // 输出角点vector
int maxCorners, // 最大角点数目
double qualityLevel, // 质量水平系数(小于1.0的正数,一般在0.01-0.1之间)
double minDistance, // 最小距离,小于此距离的点忽略
cv::InputArray mask = noArray(), // mask=0的点忽略
int blockSize = 3, // 使用的邻域数
bool useHarrisDetector = false, // false ='Shi Tomasi metric'
double k = 0.04 // Harris角点检测时使用
);
第一个参数是输入图像(8位或32位单通道图)。
第二个参数是检测到的所有角点,类型为vector或数组,由实际给定的参数类型而定。如果是vector,那么它应该是一个包含cv::Point2f的vector对象;如果类型是cv::Mat,那么它的每一行对应一个角点,点的x、y位置分别是两列。
第三个参数用于限定检测到的点数的最大值。
第四个参数表示检测到的角点的质量水平(通常是0.10到0.01之间的数值,不能大于1.0)。