图隐私论文速递:GRAM: An efficient ( k, l ) graph anonymization method

介绍了一种发表在Expert Systems with Applications上的(k,l)图匿名化方法,该方法通过两步策略实现:首先使用添加伪造边的方式确保在l距离内所有节点达到k匿名,然后移除对隐私保护效用影响最大的伪造边,以减少对原始图结构的影响。
摘要由CSDN通过智能技术生成

作者:gufe_hfding

论文概况

在这里插入图片描述

今天分享一篇发表在Expert Systems With Applications 上的论文“GRAM: An efficient ( k k k, l l l ) graph anonymization metho”,作者仍然是伊朗的研究人员,来自Damghan University,在图隐私领域也发表了几篇论文,但感觉质量不高。不过这篇论文还是可以,具体引用格式如下:

Reza Mortazavi, Seyedeh Hamideh Erani. GRAM: An efficient (k, l) graph anonymization method. Expert Syst. Appl. 153: 113454 (2020)

第一作者是位助理教授,研究方向感觉有点儿广,可以看他的Google主页或者dblp页面

论文创新点

这篇论文把图 k k k度匿名的一种扩展模式( k k k, l l l)度匿名方法进一步改进提高了。这样设计隐私保护方法的基本假设是敌手会根据节点邻居信息来对节点去匿名化。( k k k, l l l)匿名是让节点在距离为l的邻居范围内也满足k度匿名,之前的方法没有通用性,且不适应大规模的图,没有充分考虑图隐私保护和效用间的权衡。

为了解决这个问题,作者提出了两步策略,第一步用加伪造边的形式在 l l l距离邻居范围内使得所有的顶点都满足 k k k匿名,这样加的边都是局部边,不会大规模全局跳。在这一步中也顺带计算了每个伪造边的开销,就是这条边能为隐私保护效用的影响,影响越小开销越大;第二步,依据第一步中的伪造边的开销大小,在满足( k k k, l l l)匿名的前提下,剔除开销大的伪造边。这样来保证对图的结构改变达到最小。

这样做,确实有效,至少是在度、边的添加量、平均最短距离等指标上有提升。对更加复杂的图分析上还有待观察。

论文启示

这篇论文中给出了明确的算法伪代码,可以重现一下,并为图数据发布提供一种方法。

这样的思维方法看看能不能用在其他的图匿名算法中,比如k社团匿名,k邻居匿名、差分隐私等上,先添加噪音,并记录噪音的添加位置和效用,然后再满足隐私要求的前提下尽可能剔除噪声,来保护隐私并提高效用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值