§1.11 闭区间上连续函数的性质
如果函数在开区间内连续,在右端点左连续,在左端点右连续,那未函数就在闭区间上连续。
一、最大值与最小值定理
先介绍最大值与最小值概念:
对于区间上有定义的函数,如果有,使得对于任一都有
则称是函数在区间上的最大值(最小值)。
【定理一】(最大值和最小值定理)
在闭区间上连续的函数一定取得最大值和最小值。
这一定理在几何上是十分显然的。
设想有一条有弹性的弦,两个端点固定,呈水平地放置在坐标系中;若它上面的两点受到方向相反的两个力的作用,则产生形变,成为一条有高低起伏的曲线。
显然,C点与D点的纵坐标分别是曲线所代表的函数的最大值与最小值。
最值存在定理中的两个条件:(1)、闭区间,(2)、连续缺一不可,否则结论不成立。
根据定理一,下面的定理二,几乎是一望便知的事实。
【定理二】( 有界性定理 )
在闭区间上连续的函数一定在该区间上有界。
为了介绍闭区间上连续函数十分常用零点定理,先引入一个概念:
如果使, 则称 为函数的一个零点。
事实上,也可以看成函数方程 的一个根。
【定理三】( 零点定理 )
设在闭区间上连续,且与异号(即), 则在开区间内至少有函数的一个零点,即存在点,使
零点定理的几何意义十分显然, 它表明:
若连续曲线弧的两个端点位于轴的不同侧,则曲线弧与轴至少有一个交点。
利用这一思想,可用计算机作图来观察方程是否有实数根,有几个实根;若有实根,其实根所处的大致位置。
下面我们用 matlab 来介绍几个实例。具体做法是:将函数与直线作在同一个图上,观察它们是否相交。
【例1】判断方程 在是否有根?
解:利用MATLAB,作函数的图形
从图形上可看出,函数在[-2,2]之间确有两个零点。其作图程序如下:
x=-2:0.0005:2;
y=x.^2+x-1;
plot(x,y,'*')
hold
plot([-2,2],[0,0],'r')
plot([0,0],[-2,5],'r')
【例2】判断方程 有几个实数根。
解:利用MATLAB,作函数的图形
从图形上可看出,函数在[-1,1]之间确有两个零点。其作图程序如下:
x=-4:0.0005:4;
y=exp(-x.^2)-0.5;
plot(x,y,'*')
hold
plot([-4,4],[0,0],'r')
plot([0,0],[-0.5,0.5],'r')
【定理4】( 介值定理 )
设函数在闭区间上连续,且在这区间的端点取不同的函数值
及
那末,对于与之间的任意一个数,在开区间内至少有一点,
使得
这定理的几何意义是:
连续曲线弧与水平直线至少相交于一点。
证明:设, 则在闭区间上连续,且
与
异号。据零点定理,开区间内至少有一点使得
但,因此由上式即得
【推论】
闭区间上的连续函数必取得介于最大值 M 与最小值 m 之间的任何值。
【例3】给定一元三次方程
- 说明该方程在内至少有一个根;
- 利用计算机作图,说明该方程根的大致位置;
- 用计算方法中的“两分法”求此根近似值(精确到小数点后2位)。
解:函数 在闭区间 上连续,又
,
根据零点定理,在(0,1)内至少有一点,使得
即
故方程在区间(0,1)内至少有一个根。
下面作出函数在上的图象。
x=-1:0.0005:4;
y=x.^3-4*x.^2+1;
plot(x,y,'*')
hold
plot([-1,4],[0,0],'r')
plot([0,0],[-10,2],'r')
从图象可看出,函数在(0,1)间有一个零点,大约在0.5附近。但较为精确地给出该根却是作图无法企及的。
利用零点定理的原理,采用下面介绍的两分法来解决这一问题。
注1:课堂上的两分法演示(做四次 )
具体做法:
- 建立一个函数文件f.m,存放在盘符X:\matlab\bin下
function y=f(x)
y=x^3-4*x^2+1;
- 在命令窗口下键入命令示意图
注2:真正的两分法程序为gs0107.m
注3:利用matlab内部函数,可以直接求出根
c=[1,-4,0,1]
roots(c)
输出结果为:3.9354 0.5374 -0.4728
【例4】试证明有且只有一个实根。
证明:设,它是在上连续的初等函数。
而
同理
利用函数的保号性:
必存在两个充分大的正数
使得
在闭区间 上利用零点定理,至少存在一点,使得
即:方程至少有一个实根。
(下面来证明,函数的零点是唯一的)
假设函数存在两个互异的零点,则有
于是有
而,故
另一方面
产生矛盾。
故:只有唯一零点,方程 只有唯一实根。
转自: