定理 10.1
设曲线 C C C 是一条没有自交点的非闭的平面曲线, 由参数方程
x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] ( 1 ) x=x(t), \quad y=y(t), \quad t \in[\alpha, \beta] \quad\quad(1) x=x(t),y=y(t),t∈[α,β](1)
给出. 若 x ( t ) x(t) x(t) 与 y ( t ) y(t) y(t) 在 [ α , β ] [\boldsymbol{\alpha}, \boldsymbol{\beta}] [α,β]上连续可微, 则 C C C 是可求长的, 且弧长为
s = ∫ α β [ x