数学分析(十)-定积分的应用3-1-平面曲线的弧长2-弧长公式2:直角坐标系【参数系s=∫ₐᵝ√[x´²(t)+y´²(t)]dt,x=x,y=f(x)➾直角系:s=∫ₐᵇ√[1+f´²(x)]dx】

定理10.1阐述了非闭合平面曲线的弧长计算,当曲线由参数方程x=x(t),y=y(t)给出时,其弧长s可以通过积分公式s=∫αβ[x'(t)]²+[y'(t)]²dt得到。推论中提到,若曲线由直角坐标方程y=f(x)表示,且f(x)在[a,b]上连续可微,弧长公式简化为s=∫ab1+f'(x)²dx。" 80538824,7500779,Android 长按输入延迟与超时设置解析,"['Android开发', '输入处理', '系统配置']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

定理 10.1

设曲线 C C C 是一条没有自交点的非闭的平面曲线, 由参数方程

x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] ( 1 ) x=x(t), \quad y=y(t), \quad t \in[\alpha, \beta] \quad\quad(1) x=x(t),y=y(t),t[α,β](1)

给出. 若 x ( t ) x(t) x(t) y ( t ) y(t) y(t) [ α , β ] [\boldsymbol{\alpha}, \boldsymbol{\beta}] [α,β]上连续可微, 则 C C C 是可求长的, 且弧长为

s = ∫ α β [ x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值