在股票投资和分析中,复权因子是一个重要的概念。它能够帮助我们消除除权除息对股价的影响,从而更准确地分析股票的真实走势。今天,我们就来详细了解一下这个获取股票复权因子的接口 ——adj_factor。
一、接口基本信息
接口名称:adj_factor
使用方式:可以通过数据工具调试和查看数据。
更新时间:每天早上 9 点 30 分更新数据,确保我们获取到的是最新的复权因子信息。
积分要求:2000 积分起可使用该接口,5000 积分以上可高频调取。这意味着积分越高,使用接口时的限制就越少,能更频繁地获取数据,满足对数据实时性和大量性需求较高的用户。
二、输入参数
ts_code:股票代码,类型为 str,非必选参数。当我们想要提取单只股票的复权因子时,需要填写该股票的代码,例如 ‘000001.SZ’ 代表平安银行的股票代码。
trade_date:交易日期,格式为 YYYYMMDD,非必选参数。如果我们想获取某一天全部股票的复权因子,就填写这一天的日期,如 ‘20180718’。
start_date:开始日期,格式为 YYYYMMDD,非必选参数。当我们需要获取一段时间内的复权因子时,需要指定开始日期。
end_date:结束日期,格式为 YYYYMMDD,非必选参数。与 start_date 配合使用,指定获取复权因子的时间范围。
三、输出参数
ts_code:返回的股票代码,方便我们知道数据对应的是哪只股票。
trade_date:交易日期,明确数据对应的具体日期。
adj_factor:复权因子,这是我们最关注的参数,它反映了股票在该日期的复权情况。
四、接口示例
假设我们已经通过ts.pro_api()获取了接口权限,以下是一些使用示例:
提取 000001 全部复权因子
pro = ts.pro_api()
df = pro.adj_factor(ts_code=‘000001.SZ’, trade_date=‘’)
在这个示例中,我们通过指定ts_code为 ‘000001.SZ’,并将trade_date留空,从而获取到了该股票的全部历史复权因子。
提取 2018 年 7 月 18 日复权因子
pro = ts.pro_api()
df = pro.adj_factor(ts_code=‘’, trade_date=‘20180718’)
这里我们将ts_code留空,指定trade_date为 ‘20180718’,获取到了这一天全部股票的复权因子。
另外,还可以使用以下方式来获取同样的数据:
pro = ts.pro_api()
df = pro.query(‘adj_factor’, trade_date=‘20180718’)
五、数据样例
通过接口获取到的数据格式如下:
ts_code trade_date adj_factor
0 000001.SZ 20180809 108.031
1 000001.SZ 20180808 108.031
2 000001.SZ 20180807 108.031
3 000001.SZ 20180806 108.031
4 000001.SZ 20180803 108.031
5 000001.SZ 20180802 108.031
6 000001.SZ 20180801 108.031
7 000001.SZ 20180731 108.031
8 000001.SZ 20180730 108.031
9 000001.SZ 20180727 108.031
10 000001.SZ 20180726 108.031
11 000001.SZ 20180725 108.031
12 000001.SZ 20180724 108.031
13 000001.SZ 20180723 108.031
14 000001.SZ 20180720 108.031
15 000001.SZ 20180719 108.031
16 000001.SZ 20180718 108.031
17 000001.SZ 20180717 108.031
18 000001.SZ 20180716 108.031
19 000001.SZ 20180713 108.031
20 000001.SZ 20180712 108.031
每一行数据都包含了股票代码、交易日期和复权因子,方便我们进行后续的数据分析和处理。
通过这个接口,我们能够方便快捷地获取股票复权因子数据,为股票投资分析提供有力支持。