正交

本文深入探讨了正交的概念及其在几何中的意义,特别是通过点乘运算判断向量是否正交,并进一步解释了正交在向量和子空间之间的关系,具体体现在勾股定理的推广形式上。此外,文章还讨论了如何通过正交性质来定义和理解子空间之间的关系,特别关注于矩阵的行空间和零空间之间的正交特性。
摘要由CSDN通过智能技术生成

正交的概念类似几何中垂直的概念。

连个向量点乘的结果等于0我们称这两个向量正交。

我们可以用向量正交的概念来看勾股定理:假设a、b是两个向量,那么||a||的平方加上||b||的平方等于||a+b||的平方当切仅当向量a、b正交的时候才成立。

如果一个subspace中的任何向量和另外一个subspace中的任何向量都正交的话,我们称这两个subspace是正交的。一个矩阵的row space和null space是正交的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值