3. 空金字塔池化(Spatial Pyramid Pooling)

http://demo.netfoucs.com/danieljianfeng/article/details/42433475

3. 空金字塔池化(Spatial Pyramid Pooling)[3] 

空间金字塔池化可以把任何尺度的图像的卷积特征转化成相同维度,这不仅可以让CNN处理任意尺度的图像,还能避免cropping和warping操作,导致一些信息的丢失,具有非常重要的意义。

 

一般的CNN都需要输入图像的大小是固定的,这是因为全连接层的输入需要固定输入维度,但在卷积操作是没有对图像尺度有限制,所有作者提出了空间金字塔池化,先让图像进行卷积操作,然后转化成维度相同的特征输入到全连接层,这个可以把CNN扩展到任意大小的图像。


空间金字塔池化的思想来自于Spatial Pyramid Model,它一个pooling变成了多个scale的pooling。用不同大小池化窗口作用于卷积特征,我们可以得到1X1,2X2,4X4的池化结果,由于conv5中共有256个过滤器,所以得到1个256维的特征,4个256个特征,以及16个256维的特征,然后把这21个256维特征链接起来输入全连接层,通过这种方式把不同大小的图像转化成相同维度的特征。


对于不同的图像要得到相同大小的pooling结果,就需要根据图像的大小动态的计算池化窗口的大小和步长。假设conv5输出的大小为a*a,需要得到n*n大小的池化结果,可以让窗口大小sizeX为,步长为 。下图以conv5输出的大小为13*13为例。


疑问:如果conv5输出的大小为14*14,[pool1*1]的sizeX=stride=14,[pool2*2]的sizeX=stride=7,这些都没有问题,但是,[pool4*4]的sizeX=5,stride=4,最后一列和最后一行特征没有被池化操作计算在内。


SPP其实就是一种多个scale的pooling,可以获取图像中的多尺度信息;在CNN中加入SPP后,可以让CNN处理任意大小的输入,这让模型变得更加的flexible。

 

4.        Reference

[1]    UFLDL_Tutorial  

[2]    Krizhevsky, I. Sutskever, andG. Hinton, “Imagenet classification with deep convolutional neural networks,”in NIPS,2012.

[3]    Kaiming  He, Xiangyu Zhang, Shaoqing Ren, Jian Su,Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,LSVRC-2014 contest

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值