论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
论文链接:https://arxiv.org/abs/1608.08021
代码链接:https://github.com/sanghoon/pva-faster-rcnn
RCNN系列的object detection算法总体上分为特征提取、RPN网络和分类回归三大部分,Faster RCNN的效果虽好,但是速度较慢,这篇文章的出发点是改进Faster CNN的特征提取网络,也就是用PVANET来提取特征作为Faster RCNN网络中RPN部分和RoI Pooling部分的输入,改进以后的Faster RCNN可以在基本不影响准确率的前提下减少运行时间。我们知道加宽和加深网络向来是提升网络效果的两个主要方式,因为要提速,所以肯定做不到同时加宽和加深网络,因此PVANET网络的总体设计原则是:less channels with more layers,深层网络的训练问题可以通过residual结构来解决。另外因为PVANET结构的设计不涉及网络量化等加速操作,所以如果要进一步加速的话可以再使用加速算法。总体来说PVANET网络主要利用了以下三个思想:
1、Concatenated rectified linear unit (C.ReLU) is applied to the early stage of our CNNs (i.e., first several layers from the net