实验笔记之——Gaussian Splatting SLAM (MonoGS)配置与测试

本文介绍了3DGaussianSplatting在SLAM和自动驾驶领域的应用,着重讨论了其在实时渲染、SplatAM配置及源码解读方面的进展,包括相关论文、开源项目和实际测试情况。
摘要由CSDN通过智能技术生成

之前博客对基于3DGS的SLAM进行了调研

学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研_3d gaussian splatting slam-CSDN博客文章浏览阅读3.2k次,点赞40次,收藏58次。论文主页3D Gaussian Splatting是最近NeRF方面的突破性工作,它的特点在于重建质量高的情况下还能接入传统光栅化,优化速度也快(能够在较少的训练时间,实现SOTA级别的NeRF的实时渲染效果,且可以以 1080p 分辨率进行高质量的实时(≥ 30 fps)新视图合成)。开山之作就是论文“3D Gaussian Splatting for Real-Time Radiance Field Rendering”是2023年SIGGRAPH最佳论文。_3d gaussian splatting slamhttps://blog.csdn.net/gwplovekimi/article/details/135397265?spm=1001.2014.3001.5501特别地,对3DGS以及SplaTAM都进行了测试,并对源码进行解读:

学习笔记之——3D Gaussian Splatting源码解读_3dgs代码-CSDN博客文章浏览阅读3.8k次,点赞42次,收藏73次。高斯模型的初始化,初始化过程中加载或定义了各种相关的属性使用的球谐阶数、最大球谐阶数、各种张量(_xyz等)、优化器和其他参数。self.active_sh_degree = 0 #球谐阶数self.max_sh_degree = sh_degree #最大球谐阶数# 存储不同信息的张量(tensor)self._xyz = torch.empty(0) #空间位置self._scaling = torch.empty(0) #椭球的形状尺度。_3dgs代码https://blog.csdn.net/gwplovekimi/article/details/135500438?spm=1001.2014.3001.5501学习笔记之——3D Gaussian SLAM,SplaTAM配置(Linux)与源码解读-CSDN博客文章浏览阅读2.2k次,点赞35次,收藏46次。SplaTAM全称是《SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM》,是第一个(也是目前唯一一个)开源的用3D Gaussian Splatting(3DGS)来做SLAM的工作。在下面博客中,已经对3DGS进行了调研与学习。其中也包含了SplaTAM算法的基本介绍。学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客。_splatamhttps://blog.csdn.net/gwplovekimi/article/details/135647242?spm=1001.2014.3001.5501而最近,《Gaussian Splatting SLAM》也开源了,为此用本博文记录本人配置及测试的实验过程。本博文仅供本人学习记录用~

目录

Gaussian Splatting SLAM

配置

测试视频效果

代码解读


Gaussian Splatting SLAM

论文链接:https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/dyson-robotics-lab/hide-et-al_GaussianSplattingSLAM_Dec2023.pdf

论文主页:Gaussian Splatting SLAM

代码链接:GitHub - muskie82/MonoGS: [CVPR'24] Gaussian Splatting SLAM

具体的原理方面的介绍在之前博客中有,此处略过~

配置

首先,下载代码

git clone https://github.com/muskie82/MonoGS.git --recursive
cd MonoGS

创建conda环境,并进入

conda env create -f environment.yml
conda activate MonoGS

然后下载tum数据集测试

bash scripts/download_tum.sh

由于之前测试SplaTAM的时候就下载过了,此处跳过~

运行下面代码测试~

python slam.py --config configs/mono/tum/fr3_office.yaml

首先要注意到config文件内修改数据集的地址

由于运行此代码会同时有个GUI窗口弹出,为此要改为在MobaXterm中运行

但是报错~发现是第一张GPU满了hhh

CUDA_VISIBLE_DEVICES=2 python slam.py --config configs/mono/tum/fr3_office.yaml

第一张卡的GPU id=0,第二张卡的GPU id=1,以此类推。

运行时,界面如下,好像有点卡~~~感觉远不到实时吧

在服务器上可能由于远程OPENGL的缘故把,特别的卡~~~改为用自己电脑进行测试。

类似上面的配置及安装方式,但是报错如下

可能是由于网络不好导致的,为此进入环境,然后手动一个一个pip install一次(如果还是不行就用conda install安装)

从截图看应该是opencv-python==4.8.1.78以及之后都没成功,一个一个check一下吧~(注意要先运行conda activate MonoGS,保证在对应环境下配置~)

tips:不要用Vscode的终端,直接用系统终端好像会快些。。。

然后下载数据集

bash scripts/download_replica.sh

bash scripts/download_euroc.sh

由于数据集的路径是默认的,为此不需要再更改config文件

conda activate MonoGS

python slam.py --config configs/stereo/euroc/mh02.yaml

测试视频效果

Gaussian Splatting SLAM Testing using euroc mh02

代码解读

至于代码解读就不额外写博客了~看懂了3DGS与SplaTAM看这个也差不多~后续把中文注释放到下面GitHub~

GitHub - KwanWaiPang/Gaussian_Splatting_SLAM_commentContribute to KwanWaiPang/Gaussian_Splatting_SLAM_comment development by creating an account on GitHub.icon-default.png?t=N7T8https://github.com/KwanWaiPang/Gaussian_Splatting_SLAM_comment

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值