实验笔记之——Ubuntu20.04配置nvidia以及cuda并测试3DGS与SIBR_viewers

之前博文测试3DGS的时候一直用服务器进行开发,没有用过笔记本,本博文记录下用笔记本ubuntu20.04配置过程~

学习笔记之——3D Gaussian Splatting源码解读_3dgs运行代码-CSDN博客文章浏览阅读3.2k次,点赞34次,收藏62次。高斯模型的初始化,初始化过程中加载或定义了各种相关的属性使用的球谐阶数、最大球谐阶数、各种张量(_xyz等)、优化器和其他参数。self.active_sh_degree = 0 #球谐阶数self.max_sh_degree = sh_degree #最大球谐阶数# 存储不同信息的张量(tensor)self._xyz = torch.empty(0) #空间位置self._scaling = torch.empty(0) #椭球的形状尺度。_3dgs运行代码https://blog.csdn.net/gwplovekimi/article/details/135500438?spm=1001.2014.3001.5501实验笔记之——基于COLMAP的Instant-NGP与3D Gaussian Splatting的对比_colmap导出相机坐标到instant-ngp-CSDN博客文章浏览阅读1.6k次,点赞25次,收藏24次。之前博客进行了COLMAP在服务器下的测试实验笔记之——Linux实现COLMAP-CSDN博客学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。_colmap导出相机坐标到instant-ngphttps://blog.csdn.net/gwplovekimi/article/details/135406537?spm=1001.2014.3001.5501实验笔记之——Gaussian Splatting_gaussian splatting viwer快捷键-CSDN博客文章浏览阅读1.6k次,点赞36次,收藏20次。之前博客对NeRF-SLAM进行了调研学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。_gaussian splatting viwer快捷键https://blog.csdn.net/gwplovekimi/article/details/135349210?spm=1001.2014.3001.5501

目录

一、配置nvidia

关闭系统自带的nouveau

安装NVIDIA驱动

二、安装CUDA

<think>好的,用户问的是如何在Ubuntu上部署sibr_viewers。首先,我需要回顾用户提供的引用内容,特别是引用[2],里面提到了具体的步骤。用户可能已经看过这些步骤,但可能需要更详细的解释或者遇到问题需要帮助。 首先,用户提到的引用[2]中的步骤包括安装依赖库、克隆仓库、编译安装。我需要确认这些步骤是否正确,是否有遗漏。比如,用户提供的安装依赖命令是否完整,是否需要其他包。另外,用户的环境是Ubuntu 22.04,需要确保所有依赖库在该版本中可用。 接下来,可能需要检查是否有常见的安装问题,例如权限问题、路径错误,或者缺少某些开发工具。比如,cmake是否安装,git是否安装,这些在引用中没有提到,但可能是前提条件。用户可能没有提到这些,所以需要在回答中包含这些步骤。 然后,编译过程中使用-j24参数,这取决于用户的CPU核心数,可能需要提醒用户根据实际情况调整。此外,安装完成后,如何运行程序或者测试是否安装成功也是需要考虑的,用户可能需要这方面的指导。 另外,用户可能遇到依赖项安装失败的情况,比如某些库的版本不兼容,或者需要添加第三方PPA源。例如,libembree-dev可能在默认仓库中没有,需要确认安装方法。 最后,生成相关问题需要考虑用户在部署过程中可能遇到的问题,比如依赖问题、编译错误,以及如何验证安装是否成功,或者如何配置环境等。这样可以帮助用户进一步解决可能出现的困难。</think>### 在Ubuntu系统中部署SIBR_viewers的步骤 #### 1. 安装系统依赖 首先安装编译所需的依赖库: ```bash sudo apt update sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev git cmake ``` > 注意:`libembree-dev`可能需要先添加Intel Embree仓库[^2] #### 2. 获取源代码 克隆仓库进入项目目录: ```bash git clone --recursive https://github.com/sibr/sibr.git cd sibr/SIBR_viewers ``` #### 3. 编译安装 使用CMake进行编译配置: ```bash mkdir -p build && cd build cmake .. -DCMAKE_BUILD_TYPE=Release make -j$(nproc) ``` > 说明:`-j$(nproc)`会根据CPU核心数自动设置行编译线程数 #### 4. 验证安装 编译完成后,可执行文件将生成在`build/bin`目录,可以运行测试命令: ```bash ./bin/Viewer -h ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值