基于R进行两组患者重复测量数据的分析:使用广义估计方程(GEE)

本文介绍了广义估计方程(GEE)在医学和生物统计中的重要性,特别是在处理重复测量数据时。GEE通过工作协方差矩阵纠正相关性,无需严格正态性和方差相等假设。通过R包geepack的示例,展示了如何使用GEE进行数据分析并解读结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在医学和生物统计中,广义估计方程(GEE)是一种灵活且强大的方法,用于分析重复测量数据,尤其是当数据不满足传统方差分析的假设时。GEE方法通过指定一个工作协方差矩阵来纠正测量之间的相关性,从而提供了对组内相关性的稳健估计。

GEE的适用条件

  1. 数据结构:GEE适用于具有重复测量设计的数据,其中每个受试者在不同时间点或多个场合下被测量。

  2. 相关性结构:GEE需要指定一个工作相关性结构来纠正测量之间的相关性。常见的工作相关性结构包括交换性(exchangeable)、一阶自回归(AR(1))、未结构化(unstructured)等。

  3. 正态性:尽管GEE对正态性假设的违反比传统方法更稳健,但正态性仍然是一个理想的假设,特别是对于连续变量。

  4. 同质性:GEE不需要假设不同组或不同时间点的方差相等,因此在这方面比传统ANOVA更灵活。

  5. 独立性:观察值之间应该独立,或者至少相关性应该通过工作相关性结构得到适当的纠正。

示例代码与结果解读

假设我们有一个数据集repeated_measures.csv,其中包含列id(患者ID),group(组别:'control'或'experiment'),time(时间点),和measurement(测量值)。

首先,加载必要的R包和数据集:

# 加载所需的包
library(geepack)

# 读取数据集
data <- read.csv("repeated_measures.csv")

然后,我们使用geeglm函数来拟合GEE模型:

# 拟合GEE模型
# 使用'id'作为集群变量,'group'和'time'作为固定效应
# 指定工作相关性结构为交换性(exchangeable)
model <- geeglm(measurement &#126; group + time + group:time, id = id, data = data, corstr = "exchangeable", family = gaussian())

# 查看模型摘要以获取结果
summary(model)

假设模型的输出如下:

Call:
geeglm(formula = measurement &#126; group + time + group:time, family = gaussian(),
id = id, data = data, corstr = "exchangeable")

Coefficients:
Estimate Std.err z value Pr(>|z|)
(Intercept) 5.03212 0.57456 8.7572 < 2.2e-16 ***
groupexp 1.20485 0.78553 1.5339 0.124834
time 0.50231 0.10328 4.8645 1.131e-06 ***
groupexp:time -0.15344 0.14292 -1.0734 0.282715
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation:
(Intercept) groupexp time groupexp:time
groupexp -0.101
time -0.223 0.048
groupexp:time -0.214 0.047 0.090

Standardized residuals:
Min Q1 Med Q3 Max
-2.3809930 -0.6743180 0.0001644 0.6685274 2.5108238

Number of clusters (id) : 100 Maximum cluster size : 4 

结果解读:

  • Coefficients部分提供了固定效应的估计值、标准误、z值和p值。这些值与传统的线性回归系数类似,但考虑了重复测量之间的相关性。

  • Intercept是截距的估计值,对应于所有组和时间点的平均基线测量值。

  • groupexp是实验组相对于对照组的平均效应。在这个例子中,它不显著(p值大于0.05),说明在基线时两组之间没有显著差异。

  • groupexp:times是测量指标在两组间随时间的变化趋势的比较,这里P值大于0.5说明两组患者测量指标随着时间变化趋势没有显著差异。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值