机器学习技法课程学习笔记4 -- Soft-Margin Support Vector Machine

转载自:http://blog.csdn.net/red_stone1/article/details/74279607

上节课我们主要介绍了Kernel SVM。先将特征转换和计算内积这两个步骤合并起来,简化计算、提高计算速度,再用Dual SVM的求解方法来解决。Kernel SVM不仅能解决简单的线性分类问题,也可以求解非常复杂甚至是无限多维的分类问题,关键在于核函数的选择,例如线性核函数、多项式核函数和高斯核函数等等。但是,我们之前讲的这些方法都是Hard-Margin SVM,即必须将所有的样本都分类正确才行。这往往需要更多更复杂的特征转换,甚至造成过拟合。本节课将介绍一种Soft-Margin SVM,目的是让分类错误的点越少越好,而不是必须将所有点分类正确,也就是允许有noise存在。这种做法很大程度上不会使模型过于复杂,不会造成过拟合,而且分类效果是令人满意的。

Motivation and Primal Problem

上节课我们说明了一点,就是SVM同样可能会造成overfit。原因有两个,一个是由于我们的SVM模型(即kernel)过于复杂,转换的维度太多,过于powerful了;另外一个是由于我们坚持要将所有的样本都分类正确,即不允许错误存在,造成模型过于复杂。如下图所示,左边的图 Φ1 是线性的,虽然有几个点分类错误,但是大部分都能完全分开。右边的图 Φ4 是四次多项式,所有点都分类正确了,但是模型比较复杂,可能造成过拟合。直观上来说,左边的图是更合理的模型。

这里写图片描述

如何避免过拟合?方法是允许有分类错误的点,即把某些点当作是noise,放弃这些noise点,但是尽量让这些noise个数越少越好。回顾一下我们在机器学习基石笔记中介绍的pocket算法,pocket的思想不是将所有点完全分开,而是找到一条分类线能让分类错误的点最少。而Hard-Margin SVM的目标是将所有点都完全分开,不允许有错误点存在。为了防止过拟合,我们可以借鉴pocket的思想,即允许有犯错误的点,目标是让这些点越少越好。

这里写图片描述

为了引入允许犯错误的点,我们将Hard-Margin SVM的目标和条件做一些结合和修正,转换为如下形式:

这里写图片描述

修正后的条件中,对于分类正确的点,仍需满足 yn(wTzn+b)1 ,而对于noise点,满足 yn(wTzn+b) ,即没有限制。修正后的目标除了 12wTw 项,还添加了 ynsign(wTzn+b) ,即noise点的个数。参数C的引入是为了权衡目标第一项和第二项的关系,即权衡large margin和noise tolerance的关系。

我们再对上述的条件做修正,将两个条件合并,得到:

这里写图片描述

这个式子存在两个不足的地方。首先,最小化目标中第二项是非线性的,不满足QP的条件,所以无法使用dual或者kernel SVM来计算。然后,对于犯错误的点,有的离边界很近,即error小,而有的离边界很远,error很大,上式的条件和目标没有区分small error和large error。这种分类效果是不完美的。

这里写图片描述

为了改正这些不足,我们继续做如下修正:

这里写图片描述

修正后的表达式中,我们引入了新的参数 ξn 来表示每个点犯错误的程度值, ξn0 。通过使用error值的大小代替是否有error,让问题变得易于求解,满足QP形式要求。这种方法类似于我们在机器学习基石笔记中介绍的0/1 error和squared error。这种soft-margin SVM引入新的参数 ξ

至此,最终的Soft-Margin SVM的目标为:

min(b,w,ξ) 12wTw+Cn=1Nξn

条件是:

yn(wTzn+b)1ξn

ξn0

其中, ξn 表示每个点犯错误的程度, ξn=0 ,表示没有错误, ξn 越大,表示错误越大,即点距离边界(负的)越大。参数C表示尽可能选择宽边界和尽可能不要犯错两者之间的权衡,因为边界宽了,往往犯错误的点会增加。large C表示希望得到更少的分类错误,即不惜选择窄边界也要尽可能把更多点正确分类;small C表示希望得到更宽的边界,即不惜增加错误点个数也要选择更宽的分类边界。

与之对应的QP问题中,由于新的参数 ξn 的引入,总共参数个数为 d^+1+N ,限制条件添加了 ξn0 ,则总条件个数为2N。

这里写图片描述

Dual Problem

接下来,我们将推导Soft-Margin SVM的对偶dual形式,从而让QP计算更加简单,并便于引入kernel算法。首先,我们把Soft-Margin SVM的原始形式写出来:

这里写图片描述

然后,跟我们在第二节课中介绍的Hard-Margin SVM做法一样,构造一个拉格朗日函数。因为引入了 ξn ,原始问题有两类条件,所以包含了两个拉格朗日因子 αn βn 。拉格朗日函数可表示为如下形式:

这里写图片描述

接下来,我们跟第二节课中的做法一样,利用Lagrange dual problem,将Soft-Margin SVM问题转换为如下形式:

这里写图片描述

根据之前介绍的KKT条件,我们对上式进行简化。上式括号里面的是对拉格朗日函数 L(b,w,ξ,α,β) 计算最小值。那么根据梯度下降算法思想:最小值位置满足梯度为零。

我们先对 ξn 做偏微分:

Lξn=0=Cαnβn

根据上式,得到 βn=Cαn ,因为有 βn0 ,所以限制 0αnC 。将 βn=Cαn 代入到dual形式中并化简,我们发现 βn ξn 都被消去了:

这里写图片描述

这个形式跟Hard-Margin SVM中的dual形式是基本一致的,只是条件不同。那么,我们分别令拉个朗日函数L对b和w的偏导数为零,分别得到:

n=1Nαnyn=0

w=n=1Nαnynzn

经过化简和推导,最终标准的Soft-Margin SVM的Dual形式如下图所示:

这里写图片描述

Soft-Margin SVM Dual与Hard-Margin SVM Dual基本一致,只有一些条件不同。Hard-Margin SVM Dual中 αn0 ,而Soft-Margin SVM Dual中 0αnC ,且新的拉格朗日因子 βn=Cαn 。在QP问题中,Soft-Margin SVM Dual的参数 αn 同样是N个,但是,条件由Hard-Margin SVM Dual中的N+1个变成2N+1个,这是因为多了N个 αn 的上界条件。

对于Soft-Margin SVM Dual这部分推导不太清楚的同学,可以看下第二节课的笔记:台湾大学林轩田机器学习技法课程学习笔记2 – Dual Support Vector Machine

Messages behind Soft-Margin SVM

推导完Soft-Margin SVM Dual的简化形式后,就可以利用QP,找到Q,p,A,c对应的值,用软件工具包得到 αn 的值。或者利用核函数的方式,同样可以简化计算,优化分类效果。Soft-Margin SVM Dual计算 αn 的方法过程与Hard-Margin SVM Dual的过程是相同的。

这里写图片描述

但是如何根据 αn 的值计算b呢?在Hard-Margin SVM Dual中,有complementary slackness条件: αn(1yn(wTzn+b))=0 ,找到SV,即 αs>0 的点,计算得到 b=yswTzs

那么,在Soft-Margin SVM Dual中,相应的complementary slackness条件有两个(因为两个拉格朗日因子 αn βn ):

αn(1ξnyn(wTzn+b))=0

βnξn=(Cαn)ξ=0

找到SV,即 αs>0 的点,由于参数 ξn 的存在,还不能完全计算出b的值。根据第二个complementary slackness条件,如果令 Cαn0 ,即 αnC ,则一定有 ξn=0 ,代入到第一个complementary slackness条件,即可计算得到 b=yswTzs 。我们把 0<αs<C 的点称为free SV。引入核函数后,b的表达式为:

b=ysSVαnynK(xn,xs)

上面求解b提到的一个假设是 αs<C ,这个假设是否一定满足呢?如果没有free SV,所有 αs 大于零的点都满足 αs=C 怎么办?一般情况下,至少存在一组SV使 αs<C 的概率是很大的。如果出现没有free SV的情况,那么b通常会由许多不等式条件限制取值范围,值是不确定的,只要能找到其中满足KKT条件的任意一个b值就可以了。这部分细节比较复杂,不再赘述。

这里写图片描述

接下来,我们看看C取不同的值对margin的影响。例如,对于Soft-Margin Gaussian SVM,C分别取1,10,100时,相应的margin如下图所示:

这里写图片描述

从上图可以看出,C=1时,margin比较粗,但是分类错误的点也比较多,当C越来越大的时候,margin越来越细,分类错误的点也在减少。正如前面介绍的,C值反映了margin和分类正确的一个权衡。C越小,越倾向于得到粗的margin,宁可增加分类错误的点;C越大,越倾向于得到高的分类正确率,宁可margin很细。我们发现,当C值很大的时候,虽然分类正确率提高,但很可能把noise也进行了处理,从而可能造成过拟合。也就是说Soft-Margin Gaussian SVM同样可能会出现过拟合现象,所以参数 (γ,C) 的选择非常重要。

我们再来看看 αn 取不同值是对应的物理意义。已知 0αnC 满足两个complementary slackness条件:

αn(1ξnyn(wTzn+b))=0

βnξn=(Cαn)ξ=0

αn=0 ,得 ξn=0 ξn=0 表示该点没有犯错, αn=0 表示该点不是SV。所以对应的点在margin之外(或者在margin上),且均分类正确。

0<αn<C ,得 ξn=0 ,且 yn(wTzn+b)=1 ξn=0 表示该点没有犯错, yn(wTzn+b)=1 表示该点在margin上。这些点即free SV,确定了b的值。

αn=C ,不能确定 ξn 是否为零,且得到 1yn(wTzn+b)=ξn ,这个式表示该点偏离margin的程度, ξn 越大,偏离margin的程度越大。只有当 ξn=0 时,该点落在margin上。所以这种情况对应的点在margin之内负方向(或者在margin上),有分类正确也有分类错误的。这些点称为bounded SV。

所以,在Soft-Margin SVM Dual中,根据 αn 的取值,就可以推断数据点在空间的分布情况。

这里写图片描述

Model Selection

在Soft-Margin SVM Dual中,kernel的选择、C等参数的选择都非常重要,直接影响分类效果。例如,对于Gaussian SVM,不同的参数 (C,γ) ,会得到不同的margin,如下图所示。

这里写图片描述

其中横坐标是C逐渐增大的情况,纵坐标是 γ 逐渐增大的情况。不同的 (C,γ) 组合,margin的差别很大。那么如何选择最好的 (C,γ) 等参数呢?最简单最好用的工具就是validation。

validation我们在机器学习基石课程中已经介绍过,只需要将由不同 (C,γ) 等参数得到的模型在验证集上进行cross validation,选取 Ecv 最小的对应的模型就可以了。例如上图中各种 (C,γ) 组合得到的 Ecv 如下图所示:

这里写图片描述

因为左下角的 Ecv(C,γ) 最小,所以就选择该 (C,γ) 对应的模型。通常来说, Ecv(C,γ) 并不是 (C,γ) 的连续函数,很难使用最优化选择(例如梯度下降)。一般做法是选取不同的离散的 (C,γ) 值进行组合,得到最小的 Ecv(C,γ) ,其对应的模型即为最佳模型。这种算法就是我们之前在机器学习基石中介绍过的V-Fold cross validation,在SVM中使用非常广泛。

V-Fold cross validation的一种极限就是Leave-One-Out CV,也就是验证集只有一个样本。对于SVM问题,它的验证集Error满足:

EloocvSVN

也就是说留一法验证集Error大小不超过支持向量SV占所有样本的比例。下面做简单的证明。令样本总数为N,对这N个点进行SVM分类后得到margin,假设第N个点 (xN,yN) αN=0 ,不是SV,即远离margin(正距离)。这时候,如果我们只使用剩下的N-1个点来进行SVM分类,那么第N个点 (xN,yN) 必然是分类正确的点,所得的SVM margin跟使用N个点的到的是完全一致的。这是因为我们假设第N个点是non-SV,对SV没有贡献,不影响margin的位置和形状。所以前N-1个点和N个点得到的margin是一样的。

那么,对于non-SV的点,它的 g=g ,即对第N个点,它的Error必然为零:

enonSV=err(g,nonSV)=err(g,nonSV)=0

另一方面,假设第N个点 αN0 ,即对于SV的点,它的Error可能是0,也可能是1,必然有:

eSV1

综上所述,即证明了 EloocvSVN 。这符合我们之前得到的结论,即只有SV影响margin,non-SV对margin没有任何影响,可以舍弃。

SV的数量在SVM模型选择中也是很重要的。一般来说,SV越多,表示模型可能越复杂,越有可能会造成过拟合。所以,通常选择SV数量较少的模型,然后在剩下的模型中使用cross-validation,比较选择最佳模型。

总结

本节课主要介绍了Soft-Margin SVM。我们的出发点是与Hard-Margin SVM不同,不一定要将所有的样本点都完全分开,允许有分类错误的点,而使margin比较宽。然后,我们增加了 ξn 作为分类错误的惩罚项,根据之前介绍的Dual SVM,推导出了Soft-Margin SVM的QP形式。得到的 αn 除了要满足大于零,还有一个上界C。接着介绍了通过 αn 值的大小,可以将数据点分为三种:non-SVs,free SVs,bounded SVs,这种更清晰的物理解释便于数据分析。最后介绍了如何选择合适的SVM模型,通常的办法是cross-validation和利用SV的数量进行筛选。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习技法》课程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值