opencv与ORB SLAM提取orb特征点比较

     在ORB SLAM中,通过四叉树的方式存储关键点,使得图像上特征点分布均匀,便于追踪。此次实验分别用opencv接口和ORB SLAM实现特征点的提取,效果图如下:
在这里插入图片描述实现程序:

#include <iostream>
//#include <opencv2/core/core.hpp>
//#include <opencv2/features2d/features2d.hpp>
//#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>
#include "ORBextractor.h"
using namespace std;
using namespace cv;

int main ( int argc, char** argv )
{
    //-- 读取图像
    Mat img_1 = imread ( "1.png" );
    Mat mImGray=img_1;
    Mat outimg1,outimg2;//输出图像
    cvtColor(mImGray,mImGray,CV_RGB2GRAY);//转换为灰度图

    //opencv中接口函数
    std::vector<KeyPoint> keypoints_1,keypoints_2;
    Mat descriptors_1,descriptors_2;
    Ptr<FeatureD
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值