01 卷积
卷积是指在滑动中提取特征的过程,可以形象地理解为用放大镜把每步都放大并且拍下来,再把拍下来的图片拼接成一个新的大图片的过程。
2D卷积是一个相当简单的操作:
我们先从一个小小的权重矩阵,也就是 卷积核(kernel) 开始,让它逐步在二维输入数据上“扫描”。卷积核“滑动”的同时,计算权重矩阵和扫描所得的数据矩阵的乘积,然后把结果汇总成一个输出像素。
也就是说,【卷积操作后得到的矩阵中的每个元素】都是由两个矩阵乘积得来的
——这两个矩阵分别是【原矩阵在滑动过中分割出来的“大小等同于卷积核”的矩阵】和【卷积核(卷积核一般是一个3×3或者5×5的矩阵)】
卷积核会在其经过的所有位置上都重复以上操作,直到把输入特征矩阵转换为另一个二维的特征矩阵。
简而言之,输出的特征基本上就是原输入特征的加权和(权重是卷积核自带的值),而从像素位置上看,它们所处的地方大致相同。
那么为什么输出特征的会落入这个“大致区域”呢?这取决于卷积核的大小。卷积核的大小直接决定了在生成输出特征时,它合并了多少输入特征&