深度学习中的各种卷积

1.卷积

卷积运算可以表示为y = CxC为一个稀疏矩阵。神经网络中的正向传播就是转换成了这种矩阵运算。

反向传播时,首先我们已经从更深层的网络中得到\frac{\partial Loss}{\partial y}

\frac{\partial Loss}{\partial x_j} = \sum_i \frac{\partial Loss}{\partial y_i} \frac{\partial y_i}{\partial x_j} = \sum_i \frac{\partial Loss}{\partial y_i} C_{i,j} = \frac{\partial Loss}{\partial y} \cdot C_{*,j} = C_{*,j}^T \frac{\partial Loss}{\partial y}

 

2.反卷积(称为转置卷积更为合理)

转置卷积(Transposed convolutions)其实就是在正向传播时左乘C^T,反向传播时左乘(C^T)^T,即C。转置卷积可以理解为中间运算矩阵被转置了的卷积。转置卷积的前向过程和反向过程正好和卷积的相反,实现的时候对调一下即可。

微步卷积(Fractionally strided convolutions)是转置卷积的一种,考虑padding和strides的多种情况详见

 https://blog.csdn.net/u011276025/article/details/74979405

3.空洞卷积

空洞卷积(Atrous convolutions)又名扩张卷积(Dilated convolutions),向卷积层引入了一个称为“扩张率(dilation rate)”的新参数,该参数定义了卷积核处理数据时各值的间距。普通卷积就是扩张率为1的空洞卷积。

一个扩张率为2的3×3卷积核,感受野与5×5的卷积核相同,而且仅需要9个参数。在相同的计算条件下,空洞卷积提供了更大的感受野,因此经常应用在图像分割任务中。当网络层需要较大的感受野,但计算资源有限而无法提高卷积核数量或大小时,可以考虑空洞卷积。

4.深度分离卷积

(1)标准卷积

(2)深度可分离卷积

Depthwise Conv:

Pointwise Conv:

5.分组卷积

分组卷积(Group convolutions),最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。当分组数G等于输入通道数C时,分组卷积即为Depthwise Conv。

6.可变形卷积

Deformable convolutions

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值