AI与游戏——吃豆人(3)基本的路径规划算法(上)

本文介绍了在吃豆人游戏中,路径规划算法的重要性,并详细讲解了四种基本路径规划方法:getApproximateNextMoveTowardsTarget、getNextMoveTowardsTarget、getApproximateNextMoveAwayFromTarget和getNextMoveAwayFromTarget。这些方法分别用于获取目标点的大致和精确运动方向,以及远离目标点的运动方向。文章通过实例解析了算法的工作原理,为理解A*算法奠定了基础。
摘要由CSDN通过智能技术生成

这次我们来讲一下代码中涉及的一些路径规划算法,在这个游戏中,路径规划虽然不属于人工智能但是确实实现AI算法不可或缺的基础方法,下面就来大致介绍一下有哪些主要的方法以及这些方法的实现。

(1)getApproximateNextMoveTowardsTarget:这个实现的是得到是起始点到目标点的大致的运动,为什么叫大致呢,因为这里没有考虑障碍物等因素。这个函数还可以用在A*算法上(A*算法后面会专门讲)。代码如下:

public MOVE getApproximateNextMoveTowardsTarget(int fromNodeIndex, int toNodeIndex,
            MOVE lastMoveMade, DM distanceMeasure) {
        MOVE move = null;

        double minDistance = Integer.MAX_VALUE;

        for (Entry<MOVE, Integer> entry : currentMaze.graph[fromNodeIndex].allNeighbourhoods.get(
                lastMoveMade).entrySet()) {
          
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值