计算机视觉
文章平均质量分 61
发条蟀
咸鱼
展开
-
从YOLOv1谈到YOLOv2(4)二代准确度的改进(下)
直接位置预测使用anchor boxes的另一个问题是模型不稳定,尤其是在早期迭代的时候。原创 2017-10-29 20:39:48 · 1759 阅读 · 1 评论 -
从YOLOv1谈到YOLOv2(5)二代速度与功能的改进
为了精度与速度并重,作者在速度上也作了一些改进措施。转载 2017-10-31 21:41:50 · 1353 阅读 · 0 评论 -
从YOLOv1谈到YOLOv2(3)二代的准确度改进(上)
现在开始说说在yolo之后的第二代版本,这个第二代在第一代的基础上做了很多的优化。原来的版本在准确度,速度,容错率上都有所欠缺。下面来说说为了在这方面有所提高作者采用了那些方法。原创 2017-10-22 16:53:25 · 8291 阅读 · 0 评论 -
从YOLOv1谈到YOLOv2(2)训练与损失函数
之前简单介绍了YOLO的主要思想,这里再简单介绍一下训练的过程。都知道训练的过程中需要修改神经网络的权重的,怎么修改要基于一个损失函数来判断。从最简单的图片分类来说,分错了,损失函数为1,对了为0,然后反向传播。损失函数的设计对于训练神经网络是很重要的,那么YOLO是怎么设计的呢。以下内容转自知乎“图解YOLO”损失函数的设计目标就是让坐标(x,y,w,h),confidence,cl...转载 2017-10-22 11:12:39 · 10491 阅读 · 0 评论