When playing DotA with god-like rivals and pig-like team members, you have to face an embarrassing situation: All your teammates are killed, and you have to fight 1vN.
There are two key attributes for the heroes in the game, health point (HP) and damage per shot (DPS). Your hero has almost infinite HP, but only 1 DPS.
To simplify the problem, we assume the game is turn-based, but not real-time. In each round, you can choose one enemy hero to attack, and his HP will decrease by 1. While at the same time, all the lived enemy heroes will attack you, and your HP will decrease by the sum of their DPS. If one hero's HP fall equal to (or below) zero, he will die after this round, and cannot attack you in the following rounds.
Although your hero is undefeated, you want to choose best strategy to kill all the enemy heroes with minimum HP loss.
Input
The first line of each test case contains the number of enemy heroes N (1 <= N <= 20). Then N lines followed, each contains two integers DPSi and HPi, which are the DPS and HP for each hero. (1 <= DPSi, HPi <= 1000)
Output
Output one line for each test, indicates the minimum HP loss.
Sample Input
1 10 2 2 100 1 1 100
Sample Output
20 201
题解:按照dps/hp从大到小排序,相等的话按照 hp 从小到大排序,贪心即可;
代码:
#include <iostream>
#include <string>
#include <cstring>
#include <map>
#include <string.h>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include<queue>
#include<vector>
using namespace std;
struct ememy
{
double dps;
double hp;
double average;
}a[21];
bool cmp(ememy x,ememy y)
{
if(x.average!=y.average) return x.average>y.average;
else return x.hp<y.hp;
}
int main()
{
int n;
while(cin>>n)
{
int sum=0;
for(int i=0; i<n; i++)
{
cin>>a[i].dps>>a[i].hp;
sum+=a[i].dps;
a[i].average=a[i].dps/a[i].hp;
}
sort(a,a+n,cmp);
int total=0;
for(int i=0;i<n;i++)
{
total+=sum*a[i].hp;
sum-=a[i].dps;
}
cout<<total<<endl;
}
return 0;
}