
计算机视觉
视觉相关技术总结
吃瓜群众110
这个作者很懒,什么都没留下…
展开
-
如何通俗理解计算机视觉、计算机图形、图像处理之间的区别与联系
这三者之间联系和区别可以通过下图表示, 左边的图片表示实际景物,右边图片表示实际景物对应的图片。 1、计算机图形计算机图形技术常用于计算机生成图形。该技术常用的领域有:a.动漫b.游戏c.计算机辅助设计(CAD) 2、计算机视觉计算机视觉技术在于分析图片得出有用信息。该技术常用领域为:a.人脸识别b.自动驾驶c.指纹识别...原创 2019-02-03 15:57:45 · 1281 阅读 · 0 评论 -
图像对齐(image alignment)
1、图像对齐的步骤已知图像A和B,图像对齐的步骤:提取图像A和B的特征 匹配图像A和B中的特征 求解图像A和B的对齐矩阵2使用最小二乘求解对齐矩阵的问题使用最小二乘求解对齐矩阵容易受到outliers的影响, 误差会很大。3 RANSAC(random sample consensus)算法3.1 思想假设一条线,计算非常接近这条线的局内点(i...原创 2019-09-15 23:18:38 · 19528 阅读 · 0 评论 -
照相机的成像变换
1 变换过程照相机的成像变换过程可以分为3步:世界坐标系——>相机坐标系——>图像坐标系——>像素坐标系2 世界坐标系——>相机坐标系景物从世界坐标系转换到相机坐标系需要使用到刚体变换(物体不发生变形,对一个几何物体做旋转或平移)刚体变换如下图所示:变换的数学表达式为:简化:其中,代表相机坐标系,代表世界坐标系,矩阵代表...原创 2019-09-16 12:36:54 · 1720 阅读 · 1 评论 -
求解相机参数Camera Calibration
1 主要思想使用黑白棋盘格,记录世界坐标系中关键点的坐标,然后使用手机拍照,记录相应点像素点的坐标。这样就得到了许多3D-2D的配对点2 详细过程由上一篇博客内容可知,其中 P‘ 为像素坐标, Pw为世界坐标系的点坐标,M为3*4的矩阵。令:则:假设共有n个点,用矩阵表示:转化成凸优化问题:这个问题可以通过SVD(s...原创 2019-09-16 22:38:22 · 540 阅读 · 0 评论 -
立体视觉(Stereo Vision)-本征矩阵(essential matrix)和基本矩阵(fundamental matrix)
1 物体深度问题描述:从不同的位置拍摄相同物体的两张图片,恢复其深度这里假设摄像机的镜头平行由相似三角形:由上面第一、二等式可得:深度与视差成反比2 如何配对左右图片的点问题描述:已知两张图像,由不同的照相机拍下,在左图中选一点,如何在右图中找到对应的点。由上图可知,左图中点 x 对应在右图中的点位于线段 l' 上右图中点 x‘...原创 2019-09-19 10:19:48 · 8567 阅读 · 0 评论 -
计算图像的景深
在上一篇博客中,景深与视差成反比,其公式为:为焦距,为左右相机的距离,分别为两张图像的点距离各自中心点的距离。对于左图像的每一个像素点 ,求图像景深可以分为以下几步,在右图中,找到左图像的像素点对应的极线 扫描极线,找到最匹配的点 计算视差, 并根据公式求取景深1 平行图像(parallel images)由极线约束:因为图像平行,所以...原创 2019-09-19 17:03:36 · 5281 阅读 · 0 评论 -
Structure from motion 问题
1 问题描述已知一个图像库,里面有很多从不同角度不同具体拍摄同一物体的照片,求构建该物体的3D模型 找出这些图像的拍照位置如下图所示:2 用数学语言描述问题输入:一批图像,隐含着许多对应点输出:每一个对应点对应的现实世界的3D坐标。 所有摄像机的参数,以及可能的。下图可以帮助理解 Structure from motion 问题这里涉及的目标...原创 2019-09-20 16:08:43 · 2464 阅读 · 0 评论 -
积分图像(Integral image)
1 问题起源给定一幅灰度图像,其灰度值如下图所示,要计算图中深色区域的所有像素点的灰度值之和。最直接,简单的方法就是将这9个像素值直接相加。如果深色区域扩大,里面包含成千上万个像素,这种算法的时间复杂度也会呈线性增加。积分图像的提出正好解决了这个问题。2 积分图像积分图像顾名思义,就是求和,完整的意思是每一个像素点的灰度值等于在该像素点之前所有像素点灰度值...原创 2019-09-28 15:14:06 · 13741 阅读 · 3 评论 -
图像变换(Image transformations)
1 图像变换和图像滤波(image filtering)的区别1.1 图像滤波图像滤波改变像素点的灰度值,不改变像素点的坐标,如下图所示。用函数可表示为:其中f(x)表示原图,h(x)表示滤波器1.2 图像变换图像变换改变像素点的坐标,不改变像素点的灰度值,如下图所示。用函数可表示为:其中f(x)表示原图,h(x)为图像变换2、线性...原创 2019-09-14 17:38:42 · 3066 阅读 · 0 评论 -
(Python代码)通过视差图获取图片中不同物体的高度比
1、原理可以推出不同物体的高度比可以通过如下公式得到:是左边指定物体的高度(图片中尺寸)是右边指定物体的高度(图片中尺寸)是左边指定物体的平均视差值是右边指定物体的平均视差值2、代码逻辑框图3、代码详解import multiprocessing as mpimport numpy as npimport cv2i...原创 2019-04-19 10:08:29 · 3000 阅读 · 0 评论 -
图像滤波器
1、图片一张灰度图片是由数字组成的矩阵,其中白色用数字255表示,黑色用数字0表示,介于黑白之间的不同灰度(grayscal) 用0-255之间的数字表示,如下图所示:用函数f (x,y) 表示图片:f (x,y) 为在位置 (x,y) 的像素点 (pixel) 的灰度值2、图像滤波器滤波器可以生成一个新图像,其像素是原始像素的组合。科学家使用卷积运算来表示:上式可...原创 2019-08-28 11:47:29 · 766 阅读 · 0 评论 -
边缘检测
1、边缘的特征先看一张实物图和边缘图边缘是图片中灰度变化最快的地方。下图清楚地显示了最简单的一种情况。既然找变化最快的地方,可以通过导数来求解边缘2、图片的导数一张数字图片F[x,y], 其x方向导数可定义为:3、图片的梯度3.1 图片的梯度相关定义几种常见的图片的梯度边缘的灰度用图片梯度的幅值表示,图片梯度的方向:3.2 图...原创 2019-08-28 20:47:17 · 1076 阅读 · 0 评论 -
图像重采样
图像重采样包含两种情形,一种是下采样(downsampling),把图像变小;另一种是上采样(upsampling),把图像变大。1、次级采样(sub-sampling)每隔一个,扔掉行和列,创建一个更小的图像。2、下采样(downsampling)根据Nyquist采样定律,采样频率大于等于2倍的图像的最大频率。对于高清图片,如果直接采样,采样频率很高。如果先对图...原创 2019-08-29 14:29:46 · 9132 阅读 · 0 评论 -
Harris 角点检测(Harris corner detection)
在许多应用中,会运用到特征提取。比如,把下方两张图片缝合成一张图片。哪么从哪些地方开始缝合呢?这些地方可以通过特征提取找到。1、特征图片上的特征点应该具有怎样的特性?a. 图片上的特征点不随图片的变化(平移,旋转,放大,缩小等)而改变b. 图片上的特征点不随图片的亮度变化而改变 图片上什么样的区域能够看成是特征点? 平面?边缘?角? 角,因为小窗口在任意方向的移...原创 2019-09-04 19:42:49 · 1728 阅读 · 0 评论 -
局部特征检测器和描述符
图像匹配有三个步骤:检测特征点,特征描述和匹配1、检测特征点好的特征点的位置不随图像亮度变换的改变,只与图像的几何变换有关。1.1 图像变换1.1.1 几何变换:旋转和伸缩1.1.2 亮度变换1.2 Harris角点检测的性质角点的位置受图像旋转的影响图像的亮度变化分为两种,一种是亮度偏移(I ->I + b),另一种是亮度缩放(I ->...原创 2019-09-07 12:55:47 · 2172 阅读 · 3 评论 -
BoW(词袋Bag of words)
Bag-of-words词袋模型最初被用在信息检索领域。例如检索一篇文档,只需考虑文档中出现单词的频率,而不用考虑语法语序等。在图像领域,如果把一幅图像当作文档,图像中的图像块的特征向量视为文档内的词,BoW在图像领域也可以取得很好的效果。这个过程可以分为几步:提取特征,训练虚拟词表,量化特征,用虚拟词频表示图片。1、特征提取检测图像块 归一化图像块 用SIFT描述器表示2、训练...原创 2019-09-05 21:57:17 · 960 阅读 · 0 评论 -
卷积神经网络(CNN:Convolutional Neural Network)
1、感知器(perceptron)感知器是卷积神经网络的基本单元,下图展示了其工作原理,为了方便理解,图中只显示了3个输入。向量w为输入向量x的权重,b为偏差,最后对x的线性组合()的值进行判断,如果值大于0,输出1.如果值小于0,输出0.感知器的不同组合产生不同神经网络增加层次增加深度为什么感知器可以运用于图像处理领域?图像滤波通过图像的卷积运算来...原创 2019-09-07 19:05:06 · 1881 阅读 · 0 评论 -
Viola-Jones人脸检测详解
在人脸检测中,Viola-Jones算法是一种非常经典的算法,该算法在2001年的CVPR上提出,因其高效快速的检测而被广泛使用。这个算法用来检测正面的人脸图像,对于侧脸图像的检测不是很稳健。算法可以被分为以下几个部分:利用Haar特征描述人脸特征 建立积分图像,利用该图像快速获取几种不同的矩形特征 利用Adaboost算法进行训练 建立层级分类器 非极大值抑制1利用Haa...原创 2019-10-07 20:50:13 · 15773 阅读 · 2 评论