局部特征检测器和描述符

本文介绍了图像匹配的关键步骤,包括特征点检测如Harris角点检测和斑点检测,特征描述如MOPS和SIFT,以及特征匹配的方法。讨论了Harris角点检测在亮度和缩放变换下的行为,并提出了解决角点检测问题的策略。此外,还提到了SIFT的尺度不变性和方向稳定性,以及用于评估匹配质量的ROC曲线。
摘要由CSDN通过智能技术生成

图像匹配有三个步骤:检测特征点,特征描述和匹配

1、检测特征点

好的特征点的位置不随图像亮度变换的改变,只与图像的几何变换有关。

1.1 图像变换

1.1.1 几何变换:旋转和伸缩

1.1.2 亮度变换

1.2 Harris角点检测的性质

角点的位置受图像旋转的影响

图像的亮度变化分为两种,一种是亮度偏移( I ->I + b),另一种是亮度缩放(I -> a I)

角点的位置不受亮度偏移的影响,因为常量对梯度无影响

角点的位置受亮度缩放的影响,如下图所示,亮度拉伸后,角点的位置出现的变化(多了一个)。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值