基于可穿戴传感器和深度卷积神经网络运动状态进行下半身监控算法

 

 

最近加拿大温哥华市西蒙弗雷泽大学机电系统工程与工程科学学院Menrva研究小组,发明了一种传感器装置可以实时监控下半身运动状态。

 

介绍

跑步是一项比较容易受伤运动,先前已经对跑步者进行了不同运动学参数之间关系的研究。跑步期间髋关节在额平面内的运动范围与骨盆,髋部和膝部有受伤的风险。初始地面接触时的脚和小腿角度,以及站立阶段的膝盖和髋部运动范围与跑步表现有关。初次接触时踝关节角度也与跑步相关伤害的一些动力学危险因素有关。因此,对下肢进行连续的多轴运动学监测是预防行驶伤害和改善性能的重要考虑因素。在诊所进行的复杂步态分析可提供最准确的结果,但该解决方案不适用于在日常训练期间对跑步者进行长期监视。大部分休闲跑步者也无法进入步态实验室。解决此问题的另一种方法是开发可测量运动学的可穿戴传感器。

惯性测量单元(IMU)是最常见的可穿戴传感器系统。IMU已被用于测量运动学和下半身的动力学,包括二维和三维关节角度,改变了运动学,地面反作用力,以及下主体联合力量。

 

基于IMU的可穿戴传感器在测量多轴关节角度时有局限性。磁力计易受铁磁干扰。生理骨骼坐标系也不同于连接到每个节段的IMU坐标系,这会导致测量误差。因,由IMUs和运动捕捉系统测得的角度之间的相关性对于髋额叶平面较差。考虑到IMU用于关节角度测量的准确性,应该强调的是,先前的大量工作已将运动捕获标记器附加到用于测量参考关节角度的IMU单元上,但是,将标记器附加到解剖骨标记上,这是步态分析中常用的方法会增加误差。

 

软应变传感器是已被用于下身监测,躯干角度测量,步态相位检测,和姿势分类。与刚性IMU相比,基于织物的应变传感器的主要优点是使用过程中的灵活性和舒适性。应变传感器已显示测量髋,膝,和在矢状平面中踝关节的角度为6根均方误差(RMSE)°,2°至15°,和3 °至10°。估计在步态期间最大膝盖屈曲角度的RMSE小于2°。

Totaro团队将应变传感器的使用范围从矢状面扩展到仅用于踝关节的额叶和横平面,但是,并未研究行走和跑步过程中用于非矢状面角度测量的传感器性能。也有介绍了使用污点传感器监测矢状面的运动。而步行和简单关节屈曲的任务运行时显示误差小于15°。应变传感器的性能的用于运行的比较与行走和关节弯曲练习亮点该技术在运行的应用程序的挑战。

软应变传感器的主要问题是为每个人校准传感器。方法,如直线拟合,傅里叶级数,机器学习(随机森林和神经网络),和深学习算法(LSTM)之前已经报道寻址校准问题。

 

在先前的研究中,我们表明,与线性回归器相比,机器学习模型可将膝盖角度测量的误差降低约3°。掺入深度学习模型也被证明可以降低与线性模型。

尽管将传感器校准为特定的人可以获得较高的精度,但是它需要使用黄金标准的运动捕捉系统。一种替代方法是引入一个模型,该模型可以在多个人身上校准,并且可以被其他人使用。在以前的工作中,随机森林回归者在参加者间的测试中获得了7°的RMSE用于膝关节角度测量。在参与者之间的场景中,上身姿势也被分类为65%的准确性。参与者间测试中,传感器在身体上的位置变化以及身体形状的差异是一些挑战。

考虑使用可佩戴传感器(IMU的或柔性的应变传感器),用于运行运动监测,可靠性和IMU的机会的需要已被研究用于室内和现场应用。与软应变传感器相关的先前工作主要集中在传感器的发展及其在跟踪简单活动(如关节弯曲和跑步过程中步态的二维运动学)方面的应用。在本文中,这项工作解决了基于纤维的应变传感器在运行过程中进行三维运动学监测的验证。通过优化传感器放置和先进的信号处理解决了测量精度的提高。

材料和方法

  • 应变传感器

纳入原型的光纤传感器的生产方法,用碳黑热塑性弹性体复合材料浸涂复丝氨纶丝(聚醚,尿烷和尿素),使用Hytrel 3078(H3078,DuPont Kingston,ON)在二氯甲烷(5 wt%H3078)和炭黑(相对于H3078的50 wt%)中组成的溶液通过连续卷对卷法涂覆氨纶丝以3.81厘米/秒的速度缠绕到距溶液出口1.83米的线轴上(以便在收集之前充分干燥以减少纤维粘在一起)。在60°C真空下30分钟除去所有残留的溶剂。在使用之前,通过以正弦波形将每秒10%的应变拉至40%100x,对所有传感器进行调节。为了防止传感器在接触导电液体(例如汗液)时发生短路,一旦与连接线建立连接,就可以通过浸涂在5 wt%的聚(苯乙烯-b-乙烯-共聚丁二烯-b-苯乙烯)环己烷溶液中来施加额外的绝缘护套。先前的研究报告了传感器范围,规格因子,磁滞,长期正弦测试,应变率和长期随机测试的分析。传感器在低于30%应变时没有磁滞,在4小时内信号一致,并且规格系数为5。传感器在10%,20%和30%应变时的应变响应是线性且一致的。压阻感测被限制为90%应变,而工作范围被限制为30%以确保信号线性并限制塑性变形。这项研究(附录A)中包括了在不同频率下应变的传感器的性能。传感器能够跟踪高达10 Hz(每秒200%;对于50 mm样品,速度为100 mm / s)。

 

  • 优化传感器放置

优化传感器位置是确定导致最高精度的传感器位置最少数量的重要步骤。仅针对髋关节进行了优化研究,因为它需要监视三个可能影响传感器性能的可能位置和方向的三个自由度。膝盖和脚踝的自由度和潜在姿势有限。因此,根据运动的主轴经验将传感器放置在脚踝和膝盖上,并通过反复试验对其进行完善。

完成髋关节角度传感器的放置,其目的是找到导致关节角度估计最高精度的位置组合。定位被视为特征选择问题,根据先前工作中介绍的方法将位置视为特征。使用光学相机和反射标记仪测量所有可能位置的应变。目标函数是线性回归器的精度(R 2误差),该精度在离开一人交叉验证中估计了矢状,额状和横状面的关节角度。有两种方法用于解决特征选择问题:前向顺序ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值