介绍
眼科医生是否青光眼主要诊断方法是观察视网膜眼底图像。然而,仍然难以仅通过手动观察来区分病变特征,特别是在青光眼早期。
这项工作是一场研讨会挑战-视网膜眼底青光眼挑战(REFUGE)。挑战的目标是评估和比较在视网膜眼底图像的通用数据集上进行青光眼检测和视盘/杯分割的自动算法。我们提出了两种解决方案,这些解决方案在分割和分类任务上均达到了最佳性能。该解决方案有可能扩展到新颖的方法或应用程序
在本文中,作者介绍了两种基于深度学习的自动算法,用于青光眼检测以及视盘和杯分割。利用注意力机制来学习像素级特征以进行准确的预测。特别是,我们提出了两个卷积神经网络,它们可以专注于学习各种像素级特征。此外,我们制定了几种注意力策略来指导网络学习对预测准确性有重大影响的重要特征。我们在验证数据集上评估我们的方法,提出的两个任务的解决方案都可以取得令人印象深刻的结果,并且胜过当前的最新方法。
作者信息
方法
- 细分
作者采用类似于u-net 的架构来学习不同的像素级功能。我们将u-net修改为具有多个输入(本例中为3个)可以在训练期间接收更多原始的原始像素信息。这种策略可以减少过度安装的风险,并增强网络的学习能力。我们将此架构称为X Unet。此外,我们将挤压和激励块嵌入到我们的X-Unet中,以加权来自不同卷积层通道的特征。利用一种机制,允许网络选择性地放大有价值的通道功能,并从全局信息中抑制无用的功能。另外,我们在网络解码器部分使用反卷积&