T检验和p-value含义及计算公式

本文介绍了T检验的基本概念,包括其定义、计算公式、适用条件等,并通过实例讲解了如何进行T检验及其统计学意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

       目的:比较样本均数 所代表的未知总体均数μ和已知总体均数μ0

  计算公式:

  t统计量:t=\frac{|\overline{X}-\mu_0|}{S_{\overline{X}}}=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}

     

即:
其中
   
为样本平均数,
   
为样本 标准偏差n为样本数。该统计量 t在零假说: μ= μ 0为真的条件下服从自由度为 n−1的 t分布

  自由度:v=n - 1

  适用条件:

  (1) 已知一个总体均数;

  (2) 可得到一个样本均数及该样本标准误;

  (3) 样本来自正态或近似正态总体。


为什么要t检验或者其他检验呢,是因为 样本参数=总体参数+机会误差+偏差,现在我们手里有样本,可以计算样本参数,但是我们想知道的是总体参数,但是这个样本参数能不能代表总体参数呢?

排除法,t检验在这里就是用来判断是否是机会误差这个因素造成,通俗点说就是样本得到的参数值可不可能由于是抽取的时候的随机造成的。



标准正态分布下,约95.5% 样本落在 +/-2 sigma区间内。而p=0.05自身意味着样本统计有95%的信心拒绝原假设。

同理,+/-3 sigma 占标标准正态区间99.7,约合p=0.01。





举例:

1.

p-value是一种概率:在原假设为真的前提下,出现该样本或比该样本更极端的结果的概率之和。

 

 

例子:

我们假设

H0:出现正面的概率是1/2

扔硬币20次出现了14次正面.该样本的单边p-value计算如下:

image

image

 

考虑双边检验时候,p-value是单边的二倍,即0.115


2.
以单总体t检验为例说明: [2]  
问题:难产儿出生数n=35,体重均值
   
=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?
解:1.建立假设、确定检验水准α
H0:μ = μ0 (零假设null hypothesis)
H1:μ ≠ μ0(备择假设alternative hypothesis)
双侧检验,检验水准:α=0.05
2.计算检验统计量
=1.77
3.查相应界值表,确定P值,下结论。
查附表1,t 0.025 / 34 = 2.032,t < t 0.025 / 34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义

### Mann-Kendall 趋势检验计算公式 Mann-Kendall (MK) 趋势检验是一种非参数统计测试,用于检测时间序列数据中的单调趋势。此方法不需要假设数据服从特定分布,并能有效处理缺失值和重复值的情况。 #### 计算步骤 定义时间为 \( t \),样本总数为 \( n \)[^2]。对于每一个观测值 \( X_i \),其中 \( i=1,2,...,n \),考虑所有后续的观测值 \( X_j \),\( j=i+1,i+2,...,n \)。如果 \( X_j > X_i \),则记为 +1;如果 \( X_j < X_i \),则记为 -1;如果两者相等,则记为 0。这样可以得到一系列差分符号组成的向量 S: \[ S = \sum_{k=1}^{n-1}\sum_{j=k+1}^{n}sgn(X_j-X_k) \] 这里 sgn 函数表示符号函数,当输入大于零返回 +1,小于零返回 -1,等于零时返回 0[^3]。 为了评估显著性水平,还需要计算方差 Var(S): \[ Var(S)=\frac{1}{18}[n(n-1)(2n+5)-\sum_{p=1}^{q}tp(tp-1)(2tp+5)] \] 其中 q 表示相同数值组的数量,而 tp 是第 p 组内相同数值的数量。最后一步是标准化 Z 值: \[ Z=\left\{\begin{matrix} \dfrac{S-1}{\sqrt{Var(S)}} & 当 S>0 \\ 0& 当 S=0 \\ \dfrac{S+1}{\sqrt{Var(S)}} & 当 S<0 \end{matrix}\right.\] 这个 Z 値近似遵循标准正态分布 N(0,1),因此可以根据选定置信度查表获得临界值来判断是否存在明显上升或下降趋势。 ```python import numpy as np from scipy.stats import norm def mann_kendall_test(x): """ Perform the Mann-Kendall trend test on a time series. Parameters: x : array_like A one-dimensional data sequence. Returns: tuple of float and bool The normalized score z-value and boolean indicating whether there is an increasing or decreasing trend at alpha level 0.05. """ n = len(x) s = 0 for k in range(n-1): for j in range(k+1,n): s += np.sign(x[j]-x[k]) unique_x = np.unique(x) g = len(unique_x) if n==g: # no tie situation var_s = (n*(n-1)*(2*n+5))/18 else: tp = np.zeros(g) for i in range(len(unique_x)): tp[i]= sum(x==unique_x[i]) var_s=n*(n-1)*(2*n+5) for i in range(len(tp)): var_s=var_s-(tp[i]*(tp[i]-1)*(2*tp[i]+5)) var_s=var_s/18 if s>0: z=(s-1)/np.sqrt(var_s) elif s<0: z=(s+1)/np.sqrt(var_s) else: z=0 p_value=2*(1-norm.cdf(abs(z))) h=p_value<=0.05 return round(z,4),h ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值