Coursera Self-Driving Car Part4 运动规划之参数曲线笔记

本文介绍了无人驾驶课程中关于路径规划的理论,包括最大曲率限制的运动学约束、参数化曲线的概念以及路径优化。重点讨论了五次样条和三次螺旋线在路径规划中的应用,分析了五次样条曲率计算的复杂性和三次螺旋线的曲率约束优势。总结了路径规划问题的关键点和样条、螺旋线的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        作为Coursera第四章FinalProject的理论准备,整理了Coursera无人驾驶课程4.7.1 parametric curves的笔记。

Coursera无人驾驶课程视频链接

目录

学习目标

运动学约束

参数化曲线 

路径优化

路径参数化例子

 五次样条

五次样条曲率计算

三次螺旋线

多项式螺旋线的x,y坐标计算

总结


学习目标

  1. 理解路径规划问题及其约束和边界条件
  2. 知道参数曲线是什么
  3. 描述在路径规划领域使用样条曲线和螺旋线的优缺点

运动学约束

最大曲率限制:因为车辆有最小转弯半径,意味着车辆能走的路径的曲率不能超过最大值。

通常为了计算简便,通过对曲线上几个点的曲率进行限制达到约束整条曲线的目的。

参数化曲线 

原本y=y(x)的曲线写成x(u),y(u)的形式,x,y的值都由参数u来确定,通过u来遍历整条曲线。

参数u可以是弧长,也可以是无量纲的[0,1] 0代表起点,1代表终点。

路径优化

通过代价函数f来优化路径,参数化曲线允许在参数空间优化,可以简化优化的表达式。

分别是约束c(r(u))≤α和边界条件r(0)=β0, r(uf)=βf

路径参数化例子

两个常用的参数化曲线是五次多项式和三次螺旋线

 五次样条

x,y都是u的5次多项式,对于边界条件存在解析解(closed form solution)

五次样条曲率计算

 对于五次样条曲线,具有挑战性的是曲率约束,由于其具有潜在的曲率不连续性,分母可能为0及曲率导数可能为0不能1阶连续。曲率计算复杂,进行约束计算较困难。

三次螺旋线

螺旋线定义曲线曲率为弧长的函数,定义使得曲率约束检查变得简单,曲率可以通过简单在曲线上采样一些点进行约束即可获得良好的曲率性能,因为多项式特性。

k(s)为曲率方程

θ(s)可以理解为相对于起点增加的航向角delta heading。

多项式螺旋线的x,y坐标计算

螺旋线位置没有一个严格的解析解,只能通过数值方法-辛普森法则来近似菲涅尔积分。

总结

讨论了路径规划问题里的边界条件和约束

介绍了参数曲线

讨论了路径规划中使用样条和螺旋线的差异

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wujiangzhu_xjtu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值