【数据挖掘】高斯混合模型 ( 模型简介 | 软聚类 | 概率作用 | 高斯分布 | 概率密度函数 | 高斯混合模型参数 | 概率密度函数 )



I . 高斯混合模型方法 ( GMM )


1 . 高斯混合模型 与 K-Means 相同点 : 高斯混合模型方法 与 K-Means 方法 , 都是通过多次迭代 , 每次迭代都对聚类结果进行改进 , 最终达到算法收敛 , 聚类分组结果达到最优 ;


2 . 高斯混合模型 与 K-Means 不同点 :


① K-Means 方法 : 使用 K-Means 方法的 聚类结果是 某个样本 被指定到 某个聚类分组中 ;

② 高斯混合模型 : 高斯混合模型的聚类分析结果是 , 某个样本 被分到了 某个聚类分组 中 , 但是除此之外还给出了 该样本 属于 该聚类概率 , 意思是 该样本 并不是 一定属于该聚类 , 而是有一定几率属于 ;

③ 高斯混合模型 应用场景 : 高斯混合模型 需要训练学习出 概率密度函数 , 该方法除了用于 聚类分析 外 , 还可以用于 密度估计 等用途 ;



II . 硬聚类 与 软聚类


硬聚类 与 软聚类 :


① 硬聚类 (硬指派 ) : K-Means 方法中 , 每个数据集样本 , 都被指派了一个聚类分组 ;

② 软聚类 ( 软指派 ) : 高斯混合模型方法中 , 每个数据集样本 , 也都被指派了一个聚类分组 , 此外还指定了该样本属于该聚类分组的概率 , 即该样本不一定属于该聚类分组 , 有一定几率属于其他聚类分组 ;

③ 硬指派概率 : 硬指派中 , 样本如果属于某个聚类分组 , 就是 100% 属于 , 如果不属于某聚类 , 就是 0% 属于 , 没有概率的概念 ;



III . GMM 聚类结果概率的作用


1 . 概率信息 : 高斯混合模型 方法 的 聚类结果 附带 样本 属于 聚类 的 概率 , 其包含的信息量 远远高于 K-Means 方法的 单纯的样本聚类分组 ;


2 . 聚类概率 : 聚类算法并不是万能的 , 不能保证 100% 准确 , 这里可以将 高斯混合模型 样本 的 聚类分组 概率值 , 转为一个评分 , 用该评分表示 聚类结果 的准确性 ;


3 . 评分作用 : 同一个聚类分析 , 使用不同的方法 , 得到 多个结果 , 每个结果都有 聚类概率 转化的一个评分 , 可以将 聚类结果评分 最高的那个结果 当做 最终结果 ;


4 . 示例 : 疾病诊断场景 , 为病人样本进行聚类分组 , 最终结果是 49 % 49\% 49% 的概率分到得病的聚类分组 , 51 % 51\% 51% 分到不得病的聚类分组 , 如果靠机器判定该病人样本是否得病 , 风险太大了 , 这里保守的方法是计算机给出意见 , 但是不能下决定 , 让医生根据这个 聚类 和 概率 进行后续的诊断治疗工作 ;



IV . 高斯混合分布


高斯混合分布 概念 : 高斯混合模型 数据集样本 服从 高斯混合分布 ;


① 高斯分布 : 又叫 正态分布 , 常态分布 ; 高斯分布曲线两头低 , 中间高 , 呈钟形 , 又叫钟形曲线 ;

② 高斯混合分布 : k k k 个高斯分布 生成 高斯混合分布 , 这里的 k k k 是聚类分组的个数 ;



V . 概率密度函数


概率密度函数 :


① 组件 ( 高斯分布 ) :每个高斯分布 , 都是一个组件 , 代表一个聚类分组中的样本分布 ;

② 组件叠加 ( 高斯混合分布 ) : k k k 个组件 ( 高斯分布 ) 线性叠加 , 组成了 高斯混合模型的 概率密度函数 ;


p ( x ) = ∑ i = 1 k ω i g ( x ∣ μ i , Σ i ) p(x) = \sum_{i = 1}^k \omega_i g ( x | \mu_i , \Sigma_i ) p(x)=i=1kωig(xμi,Σi)


x x x 表示数据集样本中的 单个样本数据对象 ;

ω i \omega_i ωi 是权重系数 , 表示某个 高斯模型 的重要程度, 重要的分布 , ω i \omega_i ωi 值大 , 不重要的分布 , ω i \omega_i ωi 权重小 ;

ω i \omega_i ωi 表示该 x x x 样本由第 i i i 个 高斯分布 ( 组件 ) 生成的概率 , 也就是 该样本被指派到某个聚类的概率 ; i i i 代表了高斯分布的序号 , 聚类分组的序号 , 组件的序号, 其取值范围是 0   ≤ i ≤   k 0 \, \leq i \leq \, k 0ik ;

k k k 表示 高斯分布 ( 正态分布 / 组件 ) 的个数 , 也是聚类分组的个数 , 每个聚类分组的样本都是 高斯分布 ( 正态分布 ) 的 ;

g ( x ∣ μ i , Σ i ) g ( x | \mu_i , \Sigma_i ) g(xμi,Σi) 是高斯模型 的概率密度函数 ;

μ i \mu_i μi 是 高斯模型 的 均值 ;

Σ i \Sigma_i Σi 是高斯模型的 方差 ;


均值和方差唯一决定一个高斯模型 ( 正态分布 ) ;



VI . 高斯分布 曲线 ( 仅做参考 )


高斯分布 : 高斯分布曲线是钟形曲线 , 中间的 μ \mu μ 是其 样本分布的 均值 , 该值位置处的样本数最多 , σ \sigma σ 是其样本的方差 , 这是 1 1 1 个标准的高斯分布的模型 ;

高斯混合模型 : 下图是 多个 高斯分布 线性叠加后的 曲线表示图 , 仅做参考 ;



VII . 高斯混合模型 参数简介


1 . 模型 与 参数 : 高斯混合模型 概率密度函数 :


p ( x ) = ∑ i = 1 k ω i g ( x ∣ μ i , Σ i ) p(x) = \sum_{i = 1}^k \omega_i g ( x | \mu_i , \Sigma_i ) p(x)=i=1kωig(xμi,Σi)


模型结构已知 , 即 高斯混合模型 , 需要根据已知的数据样本 , 学习出模型的参数 ;


2 . 高斯混合模型 参数个数 :


① 聚类个数 ( 高斯模型个数 ) : 每个高斯混合模型 都由 k k k 个高斯模型 ( 组件 ) 线性叠加组成的 ;

② 高斯模型参数 : 每个高斯模型 都有两个参数 , 即 均值 μ i \mu_i μi , 方差 Σ i \Sigma_i Σi ;

③ 样本属于聚类分组概率 ( 系数 ) : 每个高斯模型 还有一个系数参数 , ω i \omega_i ωi 表示该 x x x 样本由第 i i i 个 高斯分布 ( 组件 ) 生成的概率 , 也就是 该样本被指派到某个聚类的概率 ;

④ 每个高斯模型相关参数个数 : k k k 个 高斯模型 , 每个高斯模型有 均值 μ i \mu_i μi , 方差 Σ i \Sigma_i Σi , 生成概率 ω i \omega_i ωi 3 3 3个参数 ;

⑤ 高斯混合模型参数个数 : 整个 高斯混合模型 有 3 × k 3 \times k 3×k 个参数 , k k k 是聚类分组个数 , 也是高斯模型个数 , 正态分布个数 ;


Σ i \Sigma_i Σi 此处方差表示 , 是大写的希腊字母 sigma σ \sigma σ , 注意与加和符号 ∑ \sum 区分 ;


K-Means 方法中 , 有 k k k 个参数 , 每个聚类分组 , 只有一个参数 , 即中心点样本参数 ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值