多目标-PLE显式细化expert表征

        多目标模型学习的难点是task之间的复杂关联,存在拉扯和跷跷板现象。基于此,MMoE提出了expert的结构设计,通过gate自适应地学习不同task之间的共性和特性,为业界多目标建模提供了一种模型结构的设计方向。由于MMoE结构中各个expert地位相当,对应不同的子空间,因此各个task对所有task共性和特性的学习,主要依赖gate网络,而gate的学习采用自适应的机制,对共性和特性的提取容易存在“惰性”。

        为了加强模型对task之间共性和特性的表达能力,PLE模型(Progressive Layered Extraction)提出在expert层面进行优化,对不同的expert赋予“task共享”和“task独有”两种角色,使不同expert针对性地学习task共性和特性,从而提高模型表达能力。该方法出自腾讯PCG,发表于RecSys2020,并获得最佳长论文奖。

1 提出背景

推荐场景用户行为丰富,不同的用户行为表征了用户不同维度和不同程度的兴趣,因此排序中可定义和使用丰富的任务。不同任务之间的关系复杂,有些任务相关性强,有些任务相关性弱,甚至存在一些相互冲突的任务,有些任务在用户行为上存在依赖关系,任务之间的复杂关系提高了模型的学习难度。

在多任务学习过程中,经常出现负迁移现象和跷跷板现象。任务之间的矛盾性和不相关性容易导致负迁移现象,即联合学习时提某个任务的信息导致其它任务的负增益。有些任务之间的关系不像强相关或矛盾这样明显,而是更模糊的关系,这样容易导致跷跷板现象,即某些任务的正向收益导致另一些任务的负向收益。

PLE论文在庞大的工业数据集上使用多种多任务模型,验证了任务之间的负迁移和跷跷板现象,如图1所示。相比于单个任务学习&#x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值