数据集论文:面向深度学习的土地利用场景分类与变化检测

高空间分辨率遥感影像能够获取地物的纹理、结构等细节信息,因此广泛应用于土地利用/土地覆盖相关任务,其中土地利用场景分类与变化检测是广受遥感领域研究人员关注的研究热点。

周维勋研究团队在《遥感学报》发表文章“MtSCCD:面向深度学习的土地利用场景分类与变化检测数据集”,该文针对现有土地利用分类与变化检测数据集存在的局限性,利用高分辨率遥感影像构建了面向深度学习的大规模场景分类与变化检测数据集MtSCCD。

1.研究背景

土地利用场景分类与变化检测对于城市发展规划和土地利用优化具有重要的指导意义,二者的关键在于获取表征能力强的图像特征。深度学习通过层次化的深层网络结构能够实现特征的自适应学习,因此面向自然图像的众多方法和模型被借鉴并用于遥感领域,形成一种新的基于数据驱动的遥感信息提取范式。对于一个有效的深度学习模型来说,高质量、大规模的遥感图像标注样本是必不可少的。

目前,不论是遥感场景分类还是变化检测领域,已经构造了多个数据集,但这些数据集不适合数据驱动的信息提取研究。对于土地利用场景分类,目前公开的场景分类数据集仅包含少部分土地利用类别,并且数据集侧重的是场景目标而非土地利用类型,所以不能直接反应土地利用情况;对于土地利用场景变化检测来说,场景内部一些地物像元或对象变化并不会直接导致场景的语义类别发生变化,所以图像级的变化检测数据集更适合土地利用类型监测。

为了推动高分辨率土地利用场景分类与变化检测的研究进展,针对现有土地利用分类与变化检测数据集存在的局限性,本文利用高分辨率遥感影像构建了面向深度学习的大规模场景分类与变化检测数据集MtSCCD(Multi-temporal Scene Classification and Change Detection)。

<think>嗯,用户需要关于深度学习图像分割的本科毕业论文资料和选题建议。首先,我得确定用户的具体需求。他提到是本科毕业论文,所以选题不宜过于复杂,但也要有足够的实践性和创新性。用户可能对深度学习的基础有一定了解,但缺乏实际项目经验,所以需要一些容易上手且有足够资源的题目。 根据提供的引用,选题的难易度很重要,不能太简单也不能太难。引用[1]和[3]都强调了选题合适的重要性,否则会影响后续的论文和答辩。图像分割方向有很多子领域,比如医学图像、自动驾驶、遥感图像等。考虑到本科生的资源限制,医学图像可能比较适合,因为公开数据集较多,比如BraTS或ISIC。 接下来,我需要生成几个示例选题。可能需要结合经典模型和当前热点。比如,U-Net是医学图像分割的经典模型,可以建议改进U-Net的结构,或者结合Transformer。另外,轻量化模型也是一个方向,适合移动端应用,比如基于MobileNet的改进。 然后,实践部分要给出具体的步骤,比如数据预处理、模型选择、训练和评估。用户可能需要知道如何获取数据集,如何处理数据,如何选择框架,比如PyTorch或TensorFlow。此外,模型评估指标如Dice系数、IoU也需要提到。 参考资料部分,要推荐书籍、论文和公开数据集。比如《深度学习》花书,U-Net原论文,BraTS数据集等。这些资源可以帮助用户深入理解并实施项目。 可能用户没有明确说出来的需求是希望选题有足够的现有研究支持,但又能体现自己的创新点。因此,在选题建议中需要平衡经典方法和创新性,比如改进现有模型的结构或应用在新领域。 最后,相关问题部分需要考虑用户可能进一步的问题,比如如何选择模型、数据增强方法、评估指标的意义,以及部署到移动端的可能性。这些问题能帮助用户更全面地完成毕设。</think>### 深度学习图像分割本科毕业论文选题建议 #### 一、选题方向分析 图像分割是计算机视觉核心任务之一,在医学影像、自动驾驶、遥感监测等领域有广泛应用。本科毕设建议选择**理论实战结合**的选题,既包含算法改进又具备可验证性,需注意**数据获取可行性**和**计算资源限制**[^1][^3]。 #### 二、示例选题推荐 1. **基于改进U-Net的医学图像分割研究** - 研究点:在经典U-Net架构中引入注意力机制/残差连接 - 数据集:BraTS脑肿瘤分割数据集或ISIC皮肤病变数据集 - 创新方向:轻量化设计、多尺度特征融合 2. **面向移动端的轻量化图像分割模型设计** - 技术路线:改进MobileNetV3+DeepLabv3+架构 - 验证场景:手机拍摄的街景图像分割 - 评估指标:mIoU、FLOPs、推理速度 3. **多模态遥感图像语义分割方法研究** - 数据特性:融合可见光红外遥感数据 - 实现方案:双分支特征提取网络设计 - 应用价值:土地利用分类、灾害监测 4. **基于Transformer的实时视频目标分割** - 技术组合:Swin Transformer+时序特征建模 - 基准对比:传统CNN模型(如Mask R-CNN)的精度/速度对比 #### 三、实践开发建议 ```python # 典型图像分割模型训练框架示例(PyTorch) import torch from torchvision.models.segmentation import deeplabv3_resnet50 model = deeplabv3_resnet50(pretrained=True) optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) loss_fn = torch.nn.CrossEntropyLoss() def train_epoch(dataloader): model.train() for images, masks in dataloader: outputs = model(images)['out'] loss = loss_fn(outputs, masks) optimizer.zero_grad() loss.backward() optimizer.step() ``` #### 四、关键参考资料 1. **经典文献** - 《U-Net: Convolutional Networks for Biomedical Image Segmentation》[^医学分割奠基论文] - 《The Cityscapes Dataset for Semantic Urban Scene Understanding》[^自动驾驶数据集标准] 2. **实践工具** - 框架选择:PyTorch Lightning/MMSegmentation - 标注工具:Labelme/CVAT - 可视化:TensorBoard/WandB 3. **公开数据集** | 数据集名称 | 领域 | 样本量 | 特点 | |---|---|---|---| | PASCAL VOC | 通用 | 10k+ | 20类标准数据集 | | COCO-Stuff | 场景 | 164k | 包含91类物体 | | ADE20K | 室内场景 | 25k | 密集标注数据 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值