高空间分辨率遥感影像能够获取地物的纹理、结构等细节信息,因此广泛应用于土地利用/土地覆盖相关任务,其中土地利用场景分类与变化检测是广受遥感领域研究人员关注的研究热点。
周维勋研究团队在《遥感学报》发表文章“MtSCCD:面向深度学习的土地利用场景分类与变化检测数据集”,该文针对现有土地利用分类与变化检测数据集存在的局限性,利用高分辨率遥感影像构建了面向深度学习的大规模场景分类与变化检测数据集MtSCCD。
1.研究背景
土地利用场景分类与变化检测对于城市发展规划和土地利用优化具有重要的指导意义,二者的关键在于获取表征能力强的图像特征。深度学习通过层次化的深层网络结构能够实现特征的自适应学习,因此面向自然图像的众多方法和模型被借鉴并用于遥感领域,形成一种新的基于数据驱动的遥感信息提取范式。对于一个有效的深度学习模型来说,高质量、大规模的遥感图像标注样本是必不可少的。
目前,不论是遥感场景分类还是变化检测领域,已经构造了多个数据集,但这些数据集不适合数据驱动的信息提取研究。对于土地利用场景分类,目前公开的场景分类数据集仅包含少部分土地利用类别,并且数据集侧重的是场景目标而非土地利用类型,所以不能直接反应土地利用情况;对于土地利用场景变化检测来说,场景内部一些地物像元或对象变化并不会直接导致场景的语义类别发生变化,所以图像级的变化检测数据集更适合土地利用类型监测。
为了推动高分辨率土地利用场景分类与变化检测的研究进展,针对现有土地利用分类与变化检测数据集存在的局限性,本文利用高分辨率遥感影像构建了面向深度学习的大规模场景分类与变化检测数据集MtSCCD(Multi-temporal Scene Classification and Change Detection)。