Cramer-Rao下界

在参数估计和统计中,Cramer-Rao界限(Cramer-Rao bound, CRB)或者Cramer-Rao下界(CRLB),表示一个确定性参数的估计的方差下界。命名是为了纪念Harald Cramer和Calyampudi Radhakrishna Rao。这个界限也称为Cramer-Rao不等式或者信息不等式。

它的最简单形式是:任何无偏估计的方差至少大于Fisher信息的倒数。一个达到了下界的无偏估计被称为完全高效的(fully efficient)。这样的估计达到了所有无偏估计中的最小均方误差(MSE,mean square error),因此是最小方差无偏(MVU,minimum variance unbiased)估计。

给定偏倚,Cramer-Rao界限还可以用于确定有偏估计的界限。在一些情况下,有偏估计方法的结果可能方差和均方差都小于无偏估计的Cramer-Rao下界。

标量情形

标量的无偏情形

假设 θ \theta θ是一个位置确定性参数。我们需要从观察变量 x x x估计它。而它们满足一个概率密度函数 f ( x ; θ ) f(x;\theta) f(x;θ)。任何 θ \theta θ的无偏估计 θ ^ \hat{\theta} θ^的方差的下界为Fisher信息 I ( θ ) I(\theta) I(θ)的倒数:
\begin{equation}
\mathrm{Var}{\hat{\theta}} \ge \frac{1}{I(\theta)}
\end{equation}
其中Fisher信息定义为
\begin{equation}
I(\theta) = \mathrm{E}[(\frac{\partial \ln f(x;\theta)}{\partial \theta})^2] =-\mathrm{E}[\frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2}]
\end{equation}
其中 E \mathrm{E} E表示求期望。

无偏估计 θ ^ \hat{\theta} θ^的效率描述估计的方差有多接近下限,定义为
\begin{equation}
e(\theta) = \frac{I(\theta)^{-1}}{\mathrm{Var} (\hat \sigma)}
\end{equation}
显然有
\begin{equation}
0 \le e(\hat{\sigma}) \le 1
\end{equation}

标量的一般情形

更一般的情况是考虑参数 θ \theta θ的无偏估计 T ( X ) T(X) T(X)。这里的无偏性理解为 E [ T ( X ) ] = ϕ ( θ ) \mathrm{E} [ T(X)] = \phi (\theta) E[T(X)]=ϕ(θ)。这种情况下,方差的下界为
\begin{equation}
\mathrm{Var}(T) \ge \frac{[\phi’(\theta)]^2}{I(\theta)}
\label{eq:gsc}
\end{equation}
其中 ϕ ′ ( θ ) \phi'(\theta) ϕ(θ)表示 ϕ ( θ ) \phi(\theta) ϕ(θ)关于 θ \theta θ的导数, I ( θ ) I(\theta) I(θ)仍然是Fisher信息。

有偏估计的界限

考虑估计 θ ^ \hat\theta θ^,设其偏倚 b ( θ ) = E [ θ ^ ] − θ b(\theta) = \mathrm{E}[\hat\theta] - \theta b(θ)=E[θ^]θ,令 ϕ ( θ ) = b ( θ ) + θ \phi(\theta) = b(\theta) + \theta ϕ(θ)=b(θ)+θ。利用上式,任何期望为 ϕ ( θ ) \phi(\theta) ϕ(θ)的无偏估计的方差都大于等于 ( ϕ ′ ( θ ) 2 ) / I ( θ ) ) (\phi'(\theta)^2) / I(\theta)) (ϕ(θ)2)/I(θ))。于是
\begin{equation}
\mathrm{Var} (\hat{\theta}) \ge \frac{[1 + b’(\theta)]^2}{I(\theta)}
\end{equation}
b ( θ ) = 0 b(\theta) = 0 b(θ)=0,上式退化为无偏估计得方差界限。当估计 θ ^ \hat\theta θ^退化为常数(概率密度函数为脉冲函数),则方差退化为0。

从上式,利用标准分解可以推出有偏估计的均方误差下界为
\begin{equation}
\mathrm{E}[(\hat\theta - \theta)^2] \ge \frac{[1 + b’(\theta)]^2}{I(\theta)} + b(\theta)^2
\end{equation}
注意,如果 1 + b ′ ( θ ) < 1 1+b'(\theta) < 1 1+b(θ)<1,那么上式右端的下界可能小于Cramer-Rao下界。例如,当 1 + b ′ ( θ ) = n n + 2 < 1 1+b'(\theta) = \frac{n}{n+2} < 1 1+b(θ)=n+2n<1

多元变量的情形

定义向量 θ = [ θ 1 , θ 2 , ⋯   , θ d ] T ∈ R d \theta =[\theta_1, \theta_2, \cdots, \theta_d]^T \in R^d θ=[θ1,θ2,,θd]TRd,它的概率密度函数为 f ( x ; θ ) f(x; \theta) f(x;θ)满足后面的两个正则化条件。Fisher信息矩阵是一个 d × d d \times d d×d的矩阵,元素 I m , k I_{m,k} Im,k定义为
\begin{equation}
I_{m, k} = \mathrm{E}[\frac{\partial}{\partial \theta_m} \ln f(x;\theta) \frac{\partial}{\partial \theta_k} \ln f(x;\theta) ] = -\mathrm{E}[ \frac{\partial^2}{\partial \theta_m \partial \theta_k} \ln f(x;\theta) ]
\end{equation}

T ( X ) T(X) T(X)为一个向量函数的估计, T ( X ) = ( T 1 ( X ) , T 2 ( X ) , ⋯   , T d ( X ) ) T T(X) = (T_1(X), T_2(X), \cdots, T_d(X))^T T(X)=(T1(X),T2(X),,Td(X))T,记它的期望向量 E [ T ( X ) ] \mathrm{E}[T(X)] E[T(X)] ϕ ( θ ) \phi(\theta) ϕ(θ)。Cramer-Rao下界认为T(X)的协方差矩阵满足
\begin{equation}
\mathrm{Cov}_\theta (T(X)) \ge \frac{\partial \phi(\theta)}{\partial \theta} [I(\theta)]^{-1} ( \frac{\partial \phi(\theta)}{\partial \theta})^T
\end{equation}
其中

  • 矩阵大于等于符号 A ≥ B A \ge B AB表示 A − B A - B AB是一个半正定矩阵;
  • ∂ ϕ ( θ ) / ∂ θ \partial \phi(\theta) / \partial \theta ϕ(θ)/θ是雅克比矩阵,它的第 i j ij ij个元素为 ∂ ϕ i ( θ ) / ∂ θ j \partial \phi_i(\theta) / \partial \theta_j ϕi(θ)/θj

T ( X ) T(X) T(X) θ \theta θ的无偏估计(例如 T ( θ ) = θ T(\theta) = \theta T(θ)=θ),则Cramer-Rao法则退化为
\begin{equation}
\mathrm{Cov_\theta}(T(X)) \ge I(\theta)^{-1}
\end{equation}

两个正则化条件

边界依赖两个关于 f ( x ; θ ) f(x;\theta) f(x;θ) T ( X ) T(X) T(X)的弱正则化条件:

  • Fisher信息矩阵总是存在。等价地说,对于所有 x x x,如果 f ( x ; θ ) > 0 f(x;\theta) > 0 f(x;θ)>0,则 ∂ ln ⁡ f ( x ; θ ) / ∂ θ \partial \ln f(x; \theta) / \partial \theta lnf(x;θ)/θ存在并且有限。
  • x x x的积分和对 θ \theta θ的微分可以交换顺序。也就是说,在下式右侧有限时,有
    \begin{equation}
    \frac{\partial}{\partial \theta} [\int T(x) f(x;\theta) dx] = \int T(x) [\frac{\partial}{\partial \theta} f(x; \theta)] dx
    \end{equation}

上述条件通常可以通过以下任意一个条件来确认:

  1. 函数 f ( x ; θ ) f(x; \theta) f(x;θ) x x x中有边界支持,并且边界不依赖于 θ \theta θ
  2. 函数 f ( x ; θ ) f(x; \theta) f(x;θ)有有限的支持,连续可微,并且对于所有 θ \theta θ积分收敛。

标量情形的证明

假设 T = t ( X ) T = t(X) T=t(X)是一个 ϕ ( θ ) \phi(\theta) ϕ(θ)的无偏估计,且 E ( T ) = ϕ ( θ ) E(T) = \phi(\theta) E(T)=ϕ(θ)。目标是证明,对于所有 θ \theta θ
\begin{equation}
Var(t(X)) \ge \frac{[\phi’ (\theta)]^2}{I(\theta)}
\end{equation}

X X X为随机变量,且概率密度函数为 f ( x ; θ ) f(x;\theta) f(x;θ). T = t ( X ) T = t(X) T=t(X)为统计量,且作为 ϕ ( θ ) \phi (\theta) ϕ(θ)的估计。定义 V V V为概率密度函数关于 θ \theta θ的偏导数
\begin{equation}
V = \frac{\partial}{\partial \theta} \ln f(X; \theta) = \frac{1}{f(X; \theta)} \frac{\partial}{\partial \theta} f(X; \theta)
\end{equation}
可以发现, V V V的概率密度函数也是 f ( X ; θ ) f(X;\theta) f(X;θ)。利用第二个正则化条件,可以得到 V V V的期望为0。即
\begin{equation}
\mathrm{E}(V) = \int f(x;\theta)[ \frac{1}{f(x; \theta)} \frac{\partial}{\partial \theta} f(x; \theta)]dx= \frac{\partial}{\partial \theta} [\int f(x;\theta) dx] = 0
\end{equation}
因为 E ( V ) = 0 \mathrm{E}(V)=0 E(V)=0,由协方差定义式可以推出 C o v ( V , T ) = E ( V T ) \mathrm{Cov}(V, T) = \mathrm{E}(VT) Cov(V,T)=E(VT)。展开可以得到
\begin{equation}
\begin{aligned}
\mathrm{Cov}(V, T) =& \mathrm{E}(T \cdot [ \frac{1}{f(X; \theta)} \frac{\partial}{\partial \theta} f(X; \theta) ]) \
=& \int t(x)[\frac{1}{f(x; \theta)} \frac{\partial}{\partial \theta} f(x; \theta)] f(x; \theta) dx \
=& \frac{\partial}{\partial \theta} [\int t(x) f(x;\theta) dx] \
= & \phi’(\theta)
\end{aligned}
\end{equation}
由柯西-施瓦茨不等式可得
\begin{equation}
\sqrt{\mathrm{Var}(T)\mathrm{Var}(V) } \ge \vert \mathrm{Cov}(V, T) \vert = \vert \phi’(\theta) \vert
\end{equation}
因此
\begin{equation}
\mathrm{Var}(T) \ge \frac{[\phi’(\theta)]^2}{\mathrm{Var}(V)} = \frac{[\phi’(\theta)]^2}{I(\theta)}
\end{equation}

参考文献

[https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Regularity_conditions][1]
[1]:https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound#Regularity_conditions

  • 22
    点赞
  • 143
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TomHeaven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值