可解释的机器学习(二):可解释的模型-线性回归
线性回归介绍
线性回归模型将目标预测为特征输入的加权和,而所学习关系的线性使解释变得容易。
线性模型中针对第i个实例:
y = β + β 1 x 1 + … + β p x p + ϵ y = \beta + \beta_1x_1 + \ldots + \beta_px_p + \epsilon y=β+β1x1+…+βpxp+ϵ
通常使用最小二乘法来找到使真实结果和预测结果之间平方差最小化的权重:
β ^ = a r g min β 0 , … , β p ∑ i = 1 n ( y ( i ) − ( β 0 + ∑ j = 1 p β j x j ( i ) ) ) 2 \hat \beta = arg\,\min_{\beta_0,\ldots,\beta_p}\sum_{i=1}^n(y^{(i)} -(\beta_0 + \sum_{j=1}^p\beta_jx_j^{(i)}))^2 β^=argβ0,…,βpmini=1∑n(y(i)−(β0+j=1∑