可解释的机器学习(二):可解释的模型-线性回归

本文深入探讨了线性回归模型的解释性,包括模型介绍、权重解释、R2指标、特征重要性和稀疏线性模型如Lasso回归。线性回归因其简单线性关系而具有良好的解释性,但可能受限于非线性和特征交互的解释。
摘要由CSDN通过智能技术生成

可解释的机器学习(二):可解释的模型-线性回归

线性回归介绍

线性回归模型将目标预测为特征输入的加权和,而所学习关系的线性使解释变得容易。

线性模型中针对第i个实例:
y = β + β 1 x 1 + … + β p x p + ϵ y = \beta + \beta_1x_1 + \ldots + \beta_px_p + \epsilon y=β+β1x1++βpxp+ϵ
通常使用最小二乘法来找到使真实结果和预测结果之间平方差最小化的权重:
β ^ = a r g   min ⁡ β 0 , … , β p ∑ i = 1 n ( y ( i ) − ( β 0 + ∑ j = 1 p β j x j ( i ) ) ) 2 \hat \beta = arg\,\min_{\beta_0,\ldots,\beta_p}\sum_{i=1}^n(y^{(i)} -(\beta_0 + \sum_{j=1}^p\beta_jx_j^{(i)}))^2 β^=argβ0,,βpmini=1n(y(i)(β0+j=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值